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Abstract

With their aging populations, many advanced economies are currently facing (i) a decline in
their long-run interest rates, and (ii) a strong increase in their social security deficit. The former
increases the probability that the policy rate is constrained by the zero lower bound (ZLB). The
latter increases the probability that the fiscal limit (FL) is reached. In this paper, we study the
optimal monetary-fiscal policy under both constraints. We conduct our analysis in an extension
of the basic New Keynesian model with an endogenous FL. We assume away both outright
default on public debt and outright monetary financing. Two of the main insights are: (i) In
response to negative demand shocks, as the economy approaches FL, the reduction in fiscal space
limits the future “output boom” that the policymaker can promise at the ZLB. Subsequently,
real activity is less stabilized in a liquidity trap. (ii) Positive technology shocks temporarily shift
the Laffer curve upwards, and, relatively to demand shocks, allow the policymaker to attain a
better welfare outcome in the proximity of the FL when the ZLB is binding.1
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1 Introduction

Many advanced economies are currently (i) facing a decline in long-run interest rates, and (ii)

approaching their fiscal limit. One common driving force of these structural long-run trends is

population aging. Specifically, the secular stagnation literature (e.g. Summers (2014), Eggertsson

and Mehrotra (2014), Gordon (2016)) emphasizes that these demographic changes, alongside other

factors, push long-run interest rates downwards (figure 1). The argument goes that the decline in the

ratio of young to middle–aged reduces loan demand, and hence, triggers a decline in long-run interest

rates (Eggertsson, Mehrotra and Robbins (2019)). At the same time, the fiscal limit literature

warns that the rise in old-age dependency ratios in advanced economies (figure 2) requires high tax

adjustments to finance adequate pensions, health and long-term care expenditures (figure 3), and

thus pushes government finances on unsustainable paths (e.g. Davig, Leeper and Walker (2010),

Leeper and Walker (2011)).
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Figure 1: Real interest rates in advanced economies
Source: Bank for International Settlements

Against this background, in the present paper we take the two ongoing structural trends as

given, and ask how they jointly affect the optimal policy response to business cycle fluctuations.

Literature so far has focused exclusively on how lower long-run interest rates affected optimal policy,

and, more specifically, on how optimal policy looked like in a world where the ZLB bound more

often. But it did not study how the character of optimal policy at the ZLB might change as the
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economy converged to its long-run fiscal limit. Answering this question is thus our contribution

to the literature. We address this issue through the lenses of the standard analytical framework

in the literature, the New-Keynesian model, which we extend with an endogenous long-run fiscal

limit. To our knowledge, endogenous fiscal limits have been used so far only in real models (e.g.

Schmitt-Grohé (1997) or Bi (2012)). We are the first to consider it explicitly in a monetary model to

study how monetary policy can alter its shape, making our analytical setup on its own an innovation

with respect to existing literature. We consider two types of real disturbances: a negative demand

preference shock, and a positive technology shock, both of which are strong enough to drive the

economy in a liquidity trap. We assume away both outright default on public debt and outright

monetary financing2.

Figure 2: Aging populations in OECD countries (� projected values for 2060)
Source: OECD (2019) – Fiscal changes and inclusive growth in aging societies

At first sight, the relevance for optimal policy of the decline in long-run interest rates may be

more obvious than the one of the convergence to the fiscal limit. Specifically, lower long-run interest

rates imply that for a given distribution of shocks, the policy rate has to decline on average more so

as to track the efficient interest rate and approach the economy to its efficient allocation. But since
2Since in our analysis we consider a consolidated balance-sheet between the government and the central bank, and

public debt is nominal, the equilibrium inflation resulted from monetary policy decisions acts de facto as monetary
financing in our setup. Thus, while our model is “cash-less”, and hence abstracts away from the use ”seignorage
revenue” (resulted from the variation of central-bank banknotes) to finance public debt (what is generally know as
“monetary financing”), the policymaker still has access in our framework to a more subtle way to “monetary finance”
the public debt via inflation in the spirit of the fiscal theory of the price level (e.g. Leeper (1991), Sims (1994)).
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the policy rate cannot decrease below zero (in principle), this implies that it will hit the ZLB more

often, creating a challenge for policy. In this context, literature has studied how the ZLB affected

the optimal business-cycle policy. In a companion paper where we abstract from the ZLB, we show

however that the convergence to the fiscal limit has also implications for the optimal response to

business cycle fluctuations. Specifically, tax variations affect differently macro-variables, as well as

marginal tax revenues, depending on the proximity of the economy to the fiscal limit. For instance,

the closer the economy to the fiscal limit, the smaller the marginal effects on tax revenues, and the

stronger the impact on price inflation of a tax hike3. These structural changes, together with all

others related to the convergence path to the fiscal limit, generally affect the nature of optimal

policy and its welfare outcome.

Figure 3: Steep tax increases needed to absorb ageing costs
Source: OECD (2019) – Fiscal changes and inclusive growth in aging societies

Our analysis outlines so far two main insights on how the convergence to the fiscal limit affects

the optimal business cycle policy at the ZLB (i.e. in a “liquidity trap”)4. One main insight

concerns negative demand preference shocks. Specifically, in response to such shocks, as the

economy approaches fiscal limit, the reduction in fiscal space limits the future output boom that the

policymaker can promise at the ZLB. Thus, under optimal policy, underutilization of production

capacity can be less mitigated during the liquidity trap, and welfare losses increase significantly.

The explanation goes as follows. As already pointed out by Eggertsson and Woodford (2003), taxes
3The effect on price sensitivity applies to taxes affecting the supply-side of the economy.
4Throughout the analysis we assume that the joint monetary-fiscal authority can commit, and we study, following

previous literature, optimal policy from a “timeless perspective” (Woodford (1999; 2003, chapter 7)).
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increase under the optimal monetary-fiscal policy mix in a liquidity trap. This rise in taxes, is

aimed, inter-alia, at creating “fiscal space” for a future expansionary fiscal policy in the form of a

tax cut once the demand disturbance has dissipated. The commitment to this loose fiscal policy

is accompanied by a commitment to a loose monetary policy, both policies being used to boost

demand while the economy is in the liquidity trap. Our analysis, however, further shows that, as

the economy comes closer to its fiscal limit, a marginal rise in taxes creates less “fiscal space”, and

hence the policymaker gradually loses its fiscal ammunition to engineer this future boom. The

significant increase in welfare losses is also due to the lower ability of the policymaker to correct

for the initial (wider) long-run allocation distortions, which is also linked to the very same loss in

“fiscal ammunition”.

The second insight concerns positive technology shocks. Relatively to demand shocks, these

shocks shift upwards the short-run “Laffer curve” and allow the policymaker to attain a better

welfare outcome than for demand shocks in the proximity of the FL. Specifically, the character of

optimal policy in a liquidity trap resembles the one in response to demand shocks: the policymaker

initially rises taxes and promises to conduct both expansionary monetary and fiscal policy after the

shock. In contrast to demand shocks however, even when the economy is initially at fiscal limit,

because of the enhanced production capacity, the initial optimal rise in taxes results in larger tax

revenues, and hence in additional fiscal space that can be used to engineer the future boom and to

permanently correct long-run distorsions.

Hereafter, the paper is organized as follows. Section 2 discusses the related literature. Section 3

describes the model. Section 4 describes the calibration. Section 5 analyses the long-run steady-state

“Laffer curve” of the model and defines the long-run fiscal limit. Section 6 derives dynamics under

the optimal policy when the ZLB is binding– first for a demand shock (subsection 6.1) and then

for a technology shock (subsection 6.2). Section 7 concludes by summarizing main findings and

discussing future extensions.

2 Related Literature

The paper contributes to two different strands of literature. One is optimal business-cycle policy.

In this literature, some previous normative analyses considered optimal monetary policy in an

environment in which a lump-sum tax is available. Some of these analyses abstracted from the
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existence of a ZLB (e.g. Clarida, Gali and Gertler (1999), Benigno and Woodford (2005)), while

others took it under consideration (e.g. Eggertsson and Woodford (2003)). A complementary set

of papers looked instead at the case of optimal monetary-fiscal policy with distorsionary taxation.

And again, some of them did not consider the ZLB constraint (e.g. Benigno and Woodford (2003),

Schmitt-Grohe and Uribe (2001), Correia et al (2001), Siu (2001)), while others did (e.g. Eggertsson

and Woodford (2006), Schmidt (2013), Nakata (2016)). In a companion paper, we studied how the

convergence to the fiscal limit affected optimal monetary-fiscal policy in the absence of the ZLB

constraint. We now contribute to this strand of New-Keynesian literature by investigating the same

question, but focusing instead on the case where the ZLB is binding under optimal policy.

The second strand of literature to which we contribute is the “fiscal limit” literature (e.g. Bianchi

and Melosi (2018), Leeper (2013), Davig, Leeper, and Walker (2011), Leeper and Walker (2011)).

Papers in this literature have warned against the dire consequences of the fiscal limit for the conduct

monetary policy, focusing on the case where excessive government commitments of the private sector

render public debt unsustainable because of the existence of a fiscal limit. Our paper contributes to

this literature by pointing out that the fiscal limit has implications for the optimal business cycle

policy even before the long-run public debt becomes unsustainable.

3 The Model

The analytical framework is an extension of the cashless-limit basic New Keynesian (NK) model

(chapter 3 in Gaĺı (2015) or Woodford (2003)) with an endogenous fiscal limit. In building our

analytical setup, we model explicitly the two on-going low-frequency phenomena as affecting the

long-run equilibrium of the model. In particular, a lower long-run interest rate is mapped to a

lower value of the steady-state interest rate which is pinned down by a higher time discount factor5.

Furthermore, the relevant fiscal limit in the analysis is the steady-state (“long-run”) fiscal limit.

The long-run fiscal limit (FL) is introduced by assuming that steady-state lump-sum transfers

to households (which proxy for pre-committed pensions and healthcare expenditures for the elderly)

are financed with distorsionary taxes6. For simplicity, we shall assume that only labor income taxes

are available. Distorsionary taxation generates a “Laffer curve” in equilibrium, with its peak in
5The same approach is followed as well in the ZLB literature.
6In modeling the fiscal pressures due to aging populations (depicted in figure 1) as higher transfers to households,

we follow the fiscal-limit literature (e.g. Bi (2012), Davig, Leeper, and Walker (2010)).
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steady-state defining the (long-run) “fiscal limit”. Larger transfers push the economy closer to its

fiscal limit. Government transfers are treated as exogenously given.

The model is populated by a large number of identical households, a continuum of size one of

monopolistic firms, and a consolidated monetary-fiscal authority.

3.1 Households

The representative household decides each period how much to consume Ct, to work Lt and to

invest in one-period riskless nominal public bonds Bt in order to maximize expected inter-temporal

lifetime utility

E0

{ ∞∑
t=0

βtZt

(
C1−σ
t − 1
1− σ − L1+ϕ

t

1 + ϕ

)}
(1)

subject to the sequence of budget constraints

PtCt +QtBt ≤ Bt−1 + (1− τt)WtLt +Divt + PtT , (2)

and solvency (transversality) conditions

lim
T→∞

Et

{
βT−t

ZTC
−σ
T BT

ZtC
−σ
t PT

}
≥ 0 (3)

for t = 0, 1, 2, ..., where Ct ≡ [
∫ 1

0 Ct(i)
1− 1

ε di]
ε
ε−1 is a standard Dixit-Stiglitz consumption index of

differentiated goods with ε a measure of substitutability among them, Pt ≡ [
∫ 1

0 Pt(i)1−εdi]
1

1−ε is the

unit price of the consumption basket, Wt stands for the nominal wage, Bt represents purchases of

one-period public bonds sold at price Qt which pay one nominal unit at t+ 1, τt is a (time-varying)

tax rate on labor income, Divt are dividends from the ownership of firms, T are real transfers from

the public sector, and log(Zt) = ρzlog(Zt−1) + εzt is a demand preference shock. The optimality

conditions describing household’s behaviour are the sequence of consumption/saving decisions

Qt = βEt

{
C−σt+1Zt+1

C−σt Zt

Pt
Pt+1

}
, (4)

labor supply ones

Cσt L
ϕ
t = (1− τt)

Wt

Pt
, (5)

together with the solvency conditions (3), and the period budget constraints (2) for t = 0, 1, 2....
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Up to a first order log-linear approximation, household’s optimality conditions write

ĉt = Et{ĉt+1} −
1
σ

(̂it − Et{πt+1}) + 1
σ

(1− ρz)zt, (6)

ω̂t = σĉt + ϕl̂t + τ

1− τ τ̂t, (7)

together with the solvency conditions (3) for t = 0, 1, 2, ..., where ît ≡ −log(Qt)− (−log(Q)) is the

deviation from steady-state of the nominal bond yield, ωt ≡ log(Wt
Pt

)− log(WP ) is the log of the real

wage rate. The budget constraints are always satisfied in equilibrium (2) given “Walras-Law”.

3.2 Firms

Firms are in monopolistic competition and each of them produces a different variety i. They are all

endowed with an identical Cobb-Douglas production technology

Yt(i) = AtL
1−α
t (i), log(At) = ρa log(At−1) + εat (8)

and face Calvo-type price adjustment constraints. In this environment, at each date, only 1− θ of

them reset their prices according to the optimality condition

p∗t = µ+ (1− βθ)
∞∑
k=0

(βθ)kEt{ψt+k/t} ∀t, (9)

where p∗t is the log of the optimal price, µ is the log of the desired gross markup M ≡ ε
ε−1 ,

ψt+k/t ≡ −log(1− α) + (ωt + pt) + lt+k/t − yt+k/t is the log of the nominal marginal cost at date

t+ k of a firm which last reset its price at date t (in logs). The remaining fraction θ of firms satiates

its demand at the posted price. A detailed derivation of the price setting equation can be found for

instance in Chapter 3 in Gaĺı (2015) or Woodford (2003).

3.3 Public sector

A consolidated monetary-fiscal authority choses optimally the evolution of nominal bond yields

it ≡ − logQt and of the labor income tax rates τt, given pre-committed (exogenous) real period

(lump-sum) transfers T , subject to the sequence of flow budget constraints

QtBt = Bt−1 + (PtT − τtWtLt), (10)
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and of solvency conditions

lim
T→∞

βTEt{QTBT } = 0 (11)

for t = 0, 1, 2, .... The flow budget constraint states that newly issued public debt at each date equals

outstanding debt plus the current fiscal deficit. The solvency constraint states that government

debt cannot increase at a rate faster than the interest rate. The policymaker can credibly promise

to repay its (nominal) debt every period and can also commit to future policy actions. Furthermore,

the public authority stands ready to issue non-interest bearing cash-balances, implying that the

ZLB

it ≥ 0 (12)

is a constraint on the set of possible equilibria that can be achieved by the policymaker.

Hereafter, we will use in the analysis the log-linearized versions of the two constraints around

the non-stochastic zero-inflation steady-state

b̂t = β−1
(
b̂t−1 − πt −

τW/PL

B/P
(τ̂t + ω̂t + l̂t)

)
+ ît ∀t, (13)

lim
T→∞

βTEt{b̂T + p̂T − îT } = 0 (14)

where b̂t ≡ log(BtPt )− log(BP ), together with the constraint on the nominal public bond yield

ît + ρ ≥ 0 ∀t (15)

where ρ ≡ −log(Q) = −log(β).

3.4 Market clearing

Market clearing conditions are imposed for each variety i, namely Yt(i) = Ct(i), and they imply in

aggregate (in log-deviations from steady-state):

ŷt = ĉt (16)
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where ŷt = log(Yt)− log(Y ) with Yt ≡ [
∫ 1

0 Yt(i)
1− 1

ε di]
ε
ε−1 . Aggregate price dynamics follow the same

path as in the standard basic NK model (e.g. Chapter 3 in Gaĺı (2015)), namely

πt = βEt{πt+1}+ λm̂ct (17)

with λ ≡ (1−θ)(1−βθ)
θ

1−α
1−α+αε , where m̂ct ≡ (ψt − pt) − (−µ) = ω̂t − (at − αl̂t) is the log-deviation

from steady-state of the average real marginal cost.

The market clearing condition on the labor market writes

Lt =
∫ 1

0
Lt(i)di,

and implies up to a first order log-linear approximation

(1− α)l̂t = ŷt − at (18)

On the bond market, government supply equals household demand.

3.5 Equilibrium

Combining representative household’s consumption/saving decision (6) with the goods market

clearing condition (16), we can summarize aggregate demand by

ŷt = Et{ŷt+1} −
1
σ

(̂it − Et{πt+1}) + 1
σ

(1− ρz)zt ∀t (19)

Furthermore, aggregate price dynamics (17) combined with the goods market clearing condition

(16), the labor market clearing condition (18) and the labor supply (7), can be used to summarize

the supply-side of the model economy as follows

πt = βEt{πt+1}+ λ

(
σ + α+ ϕ

1− α

)
ŷt − λ

1 + ϕ

1− αat + λ
τ

1− τ τ̂t ∀t, (20)

Note that (20) defines a short-run aggregate supply relation between inflation and output, given the

current tax rate, and expectations regarding future inflation, output and taxes.

Finally, using (7), (18) and (16), we can write the law of motion of end-of period public-debt
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(13) also in terms of aggregate variables

b̂t = β−1
[
b̂t−1 − πt −

(
(1− β) + t̄

b̄

)((
σ + 1 + ϕ

1− α
)
ŷt −

1 + ϕ

1− αat + 1
1− τ τ̂t

)]
+ ît ∀t (21)

The tax rate τt and the policy rate ît ≥ −ρ are both chosen as endogenous responses to

macroeconomic developments under the optimal policy mix. The monetary policy instrument it can

be used to affect directly aggregate demand (19), but only to the extent allowed by the ZLB (15).

Because of distortionary taxation, variations in the policy rate have also a direct effect on debt

sustainability (21). On top of that, monetary policy has further indirect fiscal consequences since

the equilibrium inflation affects the real burden of public debt. The same applies to the equilibrium

output which affects the tax base, and hence the equilibrium tax income. The fiscal instrument τt

can be used to affect directly aggregate supply (20), as well as debt dynamics (21), which it further

affects indirectly via the equilibrium levels of inflation and output.

4 Baseline calibration

Our baseline calibration, summarized in Table 1, follows Nakata (2017) which uses a similar setup

(but with public expenditures) to study optimal monetary-fiscal policy subject to the ZLB constraint.

Specifically, we set β = 1
1+0.075 , ϕ = 1, θ = 0.75, α = 0, ε = 10, σ = 1/6. The only difference is the

assumption of an initial steady-state debt equal to 60 percent of steady-state annual GDP, or 2.4

quarters’ GDP (i.e. b̄ = 2.4), instead of 0.5 quarters’ GDP in Nakata (2017). We choose this value

because it is more conventional in the NK literature on optimal monetary and fiscal policy (see for

instance Benigno and Woodford (2003) or Eggertsson and Woodford (2006), and most recently Gaĺı

(2020)). As shown in the following section, this calibration implies a nicely-shaped Laffer curve with

a peak attained for a labor income tax rate equal to 50%.

We check the robustness of our results by also assigning parameters the textbook values in Gali

(2015). This alternative calibration is summarized as well in Table 1. Even though similar results

emerge, we don’t use this calibration as the baseline one for exposition purposes. In particular,

conditional on the parsimonious tax system considered in the model, its implied long-run Laffer

curves is very skewed to the right with the peak attained for an empirically implausible tax rate

value of 90% (included in the Appendix 9.3 on page 38).
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Table 1: Calibration

Parameter Description Baseline Alternative

β Discount factor 1
1+0.075 0.99

σ Curvature of consumption utility 1
6 1

ϕ Curvature of labor disutility 1 5
α Index of decreasing returns to labor 0 0.25
ε Elasticity of substitution of goods 10 9
θ Calvo index of price rigidities 0.75 0.75
b̄ Steady-state debt to GDP 2.4 2.4

Note: Values are shown in quarterly rates.

5 Steady-state Laffer curve

Proportional labor income taxes generate an endogenous Laffer-curve steady-state relation between

the tax rate τ and tax revenues τ WP L. Specifically, a higher tax rate increases tax revenues when

the current rate is below a certain threshold, but it reduces it when it is above it (figure 4). This is

because a rise in the tax rate has two opposing effects on tax revenues. On the one hand, it has a

direct positive effect at a given tax base W
P L. On the other hand however, it has an indirect negativ

effect because it shrinks the tax base. This is because it decreases the after-tax wage (equation (5))

inducing households to work less (L declines), and hence produce less (Y declines) in equilibrium.

As a result, labor income W
P L, which is a direct function of output, declines7. Up to a certain

threshold value of the tax level τ̄ , the former effect is stronger and a rise in the tax rate increases

revenues. Beyond this threshold however, the latter effect prevails, and tax revenues decline.

We call this steady-state revenue-maximizing tax rate the long-run “fiscal limit”. As already

pointed out, its key feature is that any further increase in the tax rate above this level τ̄ induces a

decline in tax revenues in equilibrium. Otherwise stated, this tax rate is associated to the highest

level of tax income that can be collected given the structural parameters of the economy. Using the

zero-inflation steady-state relation implied by the government flow of funds (10)

τ̄
W

P
L = B

P

(
1− β

)
+ T , (22)

we can see that this tax rate is also associated to the highest level of risk-free public debt and period
7The steady-state wage bill (hence, the tax base) equals W

P
L = (1− α)M −1Y .
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real transfers that the government can service in equilibrium8. If the policymaker were to promise

to repay higher such levels, it would not have the means to deliver on its promises. It would have to

default, either outright or indirectly via inflation given that public debt is nominal9.

0 0.2 0.4 0.6 0.8 1
labor income tax rate

0

0.05

0.1

0.15

0.2

0.25

ta
x 
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Figure 4: Steady-state Laffer curve

As implied by the government flow of funds (22) above, high stable real long-run transfers T

imply high real tax receipts τ WP L needed to finance them. Thus, depending on T , the economy

may be far or close to its long-run fiscal limit. Figure 4 depicts the position of the economy on its

long-run Laffer curve for three different values of real transfers: 0 (green), medium (blue), high (red),

and mentions the associated steady-state transfers-to-output ratio in equilibrium. For a given real

(inherited) debt level B
P , the higher the promised real long-run transfers, the higher the equilibrium

steady-state transfers-to-output ratio, and the closer the economy to its “fiscal limit”10.

Our welfare analysis focuses on how the proximity of the economy to its long-run fiscal limit (i.e.

to the peak of the Laffer curve in figure 4) affects the optimal monetary-fiscal policy response to
8Note that an upper bound on the left-hand-side of the equality, implies an upper bound on right-hand-side.
9Note that because debt is nominal, its real return can be eroded by inflation:

τ̄
W

P
L = Π−1B

P

(
1− β

)
+ T

10Derivations used to generate figure 1 are included in the Appendix on page 37. Note that higher real levels of
inherited debt also push economies to their fiscal limit.
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negative demand and positive technology disturbances. The latter are assumed to be strong enough

such that the ZLB binds11. The analysis concerns levels of real transfers that the policymaker

can pay in equilibrium. The focus is thus on how promises a priori sustainable in the long-run

may restrict what optimal policy can achieve at business cycle frequency. We confine attention to

long-run tax rate levels on the increasing region of the “Laffer curve”.

6 Optimal policy

The policymaker chooses the optimal state-contingent path of the tax rate τt and of the policy

rate it so as to maximize the welfare of the representative household, measured by (1), given the

exogenously specified evolution of demand Zt and technology At disturbances. When choosing

these paths, the policymaker is constrained by the joint evolution of the variables {ŷt, πt} given

by equations (15), (19), (20), (21), (14), each of which must hold for each t ≥ t0, given the initial

public debt bt0−1. As in Eggertsson and Woodford (2003), but also Jung, Teranishi and Watanabe

(2003), Werning (2011), and most recently Gaĺı (2019), we study optimal policy in the case of fully

unanticipated, one-and-for-all shocks (in our case, demand and technology shocks), which bring the

natural rate of interest temporarily in negative territory.

We characterize optimal policy from a “timeless perspective” (Woodford (1999; 2003, chapter 7)).

Specifically, “from that date forward to which the policymaker would have wished to commit itself

at an earlier date”. The steady-state distorsions (i.e., the size of discrepency between steady-state

output and its efficient counterpart) are large and further widen as the model economy approaches

fiscal limit (table 2)12. This implies that the effects of stabilization policy on the average level of

output matter for the welfare evaluation of alternative policies (see equation 48 on page 41 in the

Appendix). Benigno and Woodford (2003) show that it is nonetheless possible to correctly evaluate

welfare under alternative policies to second order in a bound on the amplitude of the exogenous

disturbances using only a log-linear approximation to the model equilibrium relations to characterize

equilibrium dynamics under a given policy. This is possible when one uses as one’s welfare measure
11Importantly, if taxes were lump-sum, the economy would not face a fiscal limit.
12As standard in the NK literature, the degree of inefficiency of the steady-state output level is measured by the

steady-state wedge between the marginal rate of substitution between consumption and leisure and the marginal
product of labor. As shown in the Appendix on page 38, its expression in our model is given by

Φ ≡ 1− 1− τ
M

, Φ ∈ (0, 1) (23)

A strictly positive distorsion (i.e. Φ > 0 is associated to a level of steady-state output inefficiently low.
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a quadratic loss function in which the effects of stabilization policy on average output have already

been taken into account in the loss function, so that the loss function is purely quadratic, rather

than depending explicitly on the average level of output. Eggertsson and Woodford (2006) applied

this method to study optimal monetary-fiscal policy in a liquidity trap. Since our analysis may be

viewed as an extension of their study, we follow the same approach to characterize optimal policy in

the presence of both ZLB and FL constraints.

Table 2: Long-run distorsions on the convergence path to the fiscal limit

Transfer-to-output Distorsion

0 0.2674
0.1 0.3674
0.15 0.4174
0.3 0.5674

As shown in the Appendix 9.5 on page 39, the quadratic approximation to the expected discounted

utility of the representative household (1) in our model is a decreasing function of the objective

1
2E0

∞∑
t=0

βt
(
Q22
x ỹ

2
t + 2ξτt τ̂t + qππ

2
t

)
(24)

where ỹt ≡ ŷt − ŷ∗t is the welfare relevant output gap with ŷ∗t ≡ −
Q21
ξ

Q22
x
zt −

Q22
ξ

Q22
x
at and ξτt ≡(

Q11
ξ −

Q12
x Q

21
ξ

Q22
x

)
zt +

(
Q12
ξ −

Q12
x Q

22
ξ

Q22
x

)
at (a function of exogenous shocks). Coefficients Q are functions

of structural parameters defined in the Appendix 9.5 on page 48. We may rewrite the constraints

faced by the benevolent policymaker in terms of ỹt as:

(1) ỹt = Et{ỹt+1} −
1
σ

(̂it − Et{πt+1}) + 1
σ

(1− ρz)zt + Et{∆ŷ∗t+1} (25)

(2) πt = βEt{πt+1}+ λ

(
σ + α+ ϕ

1− α

)(
ỹt + ŷ∗t

)
− λ1 + ϕ

1− αat + λ
τ

1− τ τ̂t (26)

(3) ît + ρ ≥ 0 (27)

(4) b̂t = β−1
[
b̂t−1 − πt −

(
(1− β) + t̄

b̄

)((
σ + 1 + ϕ

1− α
)
(ỹt + ŷ∗t )−

1 + ϕ

1− αat + 1
1− τ τ̂t

)]
+ ît (28)

(5) lim
T→∞

βTEt{b̂T + p̂T − îT } = 0, (29)

(6) p̂t = πt + p̂t−1 (30)

15



for t = 0, 1, 2.... Constraint (25) is the familiar “Dynamic IS-equation”, whereas (26) is the “New-

Keynesian Philips curve” relation extended to take account of the effects of variations in taxes on

supply costs. Note that the tax instrument generally has a “cost-push” effect. Specifically, with

the exception of one particular case where the variation in the output target is most favorable, any

variation in the tax rate precludes simultaneous stabilization of inflation and the welfare relevant

output gap. Equation (27) is the ZLB constraint on the policy rate, while (28) is the flow-budget

constraint which together with the government solvency condition (29) further restrains the possible

equilibrium paths that can be attained under optimal policy. Complete stabilization of inflation,

output gap and taxes (which would minimize the welfare criterion) is generally inconsistent with

the constraints (25) to (30) above. Thus, the policymaker will strive to find the policy which yields

the best welfare trade-off for the representative household.

We consider the problem of choosing state-contingent paths {πt, ỹt, ît τ̂t, b̂t} to minimize (24)

subject to the constraints (25) to (30), given an initial public debt b−1. We assume the economy is

in steady-state prior to the shock. The Lagrangian method gives the following optimality conditions

describing the dynamics of the economy under optimal policy

ỹt : Q22
x ỹt + λ1

t − β−1λ1
t−1 − λ

(
σ + α+ ϕ

1− α

)
λ2
t + β−1

[
(1− β) + t̄

b̄

](
σ + 1 + ϕ

1− α

)
λ4
t = 0

πt : qππt −
1
σβ

λ1
t−1 + λ2

t − λ2
t−1 + β−1λ4

t − λ6
t = 0

ît : 1
σ
λ1
t + λ3

t − λ4
t = 0, t ≤ T − 1, 1

σ
λ1
T + λ3

T − λ4
T − λ5

T = 0,

b̂t : λ4
t − λ4

t+1 = 0, t ≤ T − 1, λ4
T + λ5

T = 0,

τ̂t : ξτt − λ
τ

1− τ λ
2
t + β−1

1− τ

[
(1− β) + t̄

b̄

]
λ4
t = 0,

p̂t : λ6
t − βλ6

t+1 = 0, t ≤ T − 1, λ5
T + λ6

T = 0,

λ3
t (̂it + ρ) = 0, ît + ρ ≥ 0, λ3

t ≤ 0,

for t = 0, 1, 2, ..., together with the sequence of equality constraints above. λit are the Lagrangian

multipliers associated to each of the six constraints at time t.
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6.1 Demand shocks

6.1.1 Optimal policy in a “liquidity trap”

Figure 5 displays the economy’s state contingent evolution in response to a transitory negative

demand shock. The occurrence of the disturbance causes the ZLB to bind, and the policymaker is

unable to prevent deflation and a negative output gap on impact. The transfers–to–GDP ratio is

set to 15% which places the economy relatively close, but still away from its fiscal limit (blue dot on

the “Laffer curve” in figure 4).

Optimal policy replicates the pattern identified in Eggertsson and Woodford (2006)13. In

particular, both monetary and fiscal policies are history dependent, in the sense that even after the

effects of the shock have dissipated, the policy rate and the tax rate take both temporarily values

different from what their eventual long-run values will be. Specifically, optimal policy involves a

commitment to keep nominal interest rates and tax rates low for a (limited) period of time after

the natural rate returns to its normal level, and this despite a strong output boom (i.e. a positive

output gap) and overshooting inflation. The aggregate demand schedule of the economy described

by equation (25), and copied for convenience below, shows that since agents are forward-looking,

output can be propped up (more specifically, consumption can be encouraged) at a time where

monetary ammunition is waining (namely, when the policy rate cannot be declined enough to offset

the effects of the negative shock), by promising “future output or/and inflation boom(s)”

↑↑ yt = − 1
σ

(
ît −

promised monetary expansion︷ ︸︸ ︷
↑ Et{πt+1}

)
+ ↑ Et{ŷt+1}︸ ︷︷ ︸

promised fiscal expansion
promised monetary expansion

+ 1
σ

(1− ρz)zt︸ ︷︷ ︸
<0

The promised expansionary monetary and fiscal policies after the effects of the disturbance have

dissipated are activating exactly this type of mechanisms. Subsequently, the distorsions created

by the binding ZLB on interest rates when the shock occurs are mitigated through a commitment

to use both monetary and fiscal stimulus to create “boom” conditions once the shock has ended.

Figure 6 shows that the degree of history dependence (and hence, the duration of the “promissed

boom”) increases in the duration of the shock. Specifically, while for a one period shock monetary

and fiscal policies remain loose for one more period after the shock has dissipated, for a six period
13In contrast to our analysis however where taxes are collected on labor income, Eggertsson and Woodford (2006)

features instead a VAT tax, which similar to our case, also affects the supply-side of the economy.
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shock, they remain loose for five more periods (and hence, for a eleven-period in total).

Figure 5: Responses to a transitory demand shock under optimal policy

Note: Y-axis: log- deviation from steady-state for output, inflation, public debt and the demand
shock, deviations from steady-state for the interest rate, the efficient rate, tax rate and tax income.
X-axis: quarters after the shock
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Figure 6: Responses to a demand shock under optimal policy

Note: Y-axis: log- deviation from steady-state for output, inflation, public debt and the demand
shock, deviations from steady-state for the interest rate, the efficient rate, tax rate and tax income.
X-axis: quarters after the shock
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Also, as in Eggertsson and Woodford (2006), the “promised” fiscal stimulus in the period

immediately following the return of the efficient rate to its steady-state level is financed by a rise in

the tax rate while the shock is active. The tax rise while the economy is in the liquidity trap also

helps more directly by providing a cost-push incentive for prices not to be cut. Subsequently, the

optimal tax response is to raise taxes in the event of a strong negative demand disturbance driving

the policy rate to the ZLB, while committing to lower them during the inflationary boom (that

monetary policy will also facilitate once the natural rate of interest returns to a normal level).

Last but not least, as in the latter reference, the policymaker permanently lowers both the tax

rate and the public debt under optimal policy. As a result, the terminal steady-state value of output

is different than the initial one, implying that optimal policy affects allocations not only in the short

run, but also in the long-run. Figures 5 and 6 show that it achieves this both via the initial rise in

taxes and via the inflationary boom engineered in the aftermath of the shock. Importantly, this

result does not reflect an incentive to inflate away the value of nominal public debt ex-post that “a

policymaker would instead wish to commit itself in advance not to yield to”. This is because the

responses shown in figures 5 and 6 represent the responses to a real disturbance that lowers the

natural rate of interest under the continuation of an optimal state-contingent commitment that

would have been chosen prior to quarter zero, and prior to learning that the disturbance would

occur (given the “timeless perspective” of optimal policy).

6.1.2 Fiscal component of optimal policy

Thus far, we have showed that under optimal policy the policymaker is able both to correct long-run

distorsions, and to mitigate the underutilization of the productive capacity in the short-run. In this

section we have a closer look at the role played by fiscal policy on both these two dimensions.

Fiscal policy affects the equilibrium allocation in a liquidity trap via two channels. One is the

“cost-push channel” which works via the aggregate supply schedule of the economy (described by

equation (26)). Specifically, the rise taxes at the ZLB increases marginal cost, and hence decreases

the aggregate supply schedule of the economy

AS : ↑πt = βEt{πt+1}+ λ

(
σ + α+ ϕ

1− α

)
ŷt + λ

τ

1− τ τ̂t ↑︸ ︷︷ ︸
rise in marginal cost
“cost-push” channel

20



exerting direct positive pressures on price inflation. The positive pressures on prices via this

“cost-push” channel are used to countervail deflation while the ZLB is binding. Figure 7 shows that

the positive effects of the tax hike on equilibrium price inflation via this channel– namely, it shows

how the decrease in the aggregate supply curve from ASo (black solid line) to AS1 (red dotted line)

pushes, at given demand, price inflation upwards.

∏

Y

AD° AD’
fiscal-space channel

AS°

AS’

cost-push channel

Figure 7: Effects of ∆τt > 0 in a liquidity trap

The other channel works via the aggregate demand channel of the economy. Specifically, the

same rise in taxes pushes upwards the demand schedule (described by equation (25)) at the ZLB,

by creating the expectation of a future “output boom”:

AD : ↑yt = ↑ Et{ŷt+1}︸ ︷︷ ︸
promised fiscal expansion

“fiscal-space” channel

− 1
σ

(̂it − Et{πt+1}) + 1
σ

(1− ρz)zt

This is because the rise in taxes lowers public debt (or builds up government assets) and creates

“fiscal space” (as shown in the left bottom panel of figure 5). The latter is used, together with the

extended loose monetary policy, to engineer an output boom after the shock. Figure 7 shows that

the positive effects of the tax hike on equilibrium output via this channel– namely, it shows how

the increase in the aggregate demand schedule from ADo (black solid line) to AD1 (blue dotted

line) pushes in equilibrium both output and inflation upwards at a given supply. As a result, in

a “liquidity trap”, fiscal policy has a joint positive effect on output via the “fiscal–space channel”,
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and on inflation via the“fiscal–space channel” and the “cost–push channel” (via an upward shift in

aggregate demand, and a downward shift in aggregate supply, respectively).

Apart from helping stabilize the economy in the face of demand shocks in the short-run, fiscal

policy also contributes to the correction of long-run distorsions. In particular, the “fiscal space”

created by the initial rise in taxes is further directly used to engineer a permanent decline in real

debt, and hence in the final long-run level of taxes required to service it14. Given the permanent

decline in taxes, the policymaker thus allows the economy to reach a new long-run level of output

higher than the one prior to the shock.

6.1.3 Policy problem and the convergence to fiscal limit

The convergence of the economy to its long-run fiscal limit affects the policy design problem on

three important dimensions. First, long-run distorsions widen on this convergence path, implying

that the overall scope for policy increases. This pattern is showed in table 2. Second, a marginal

tax hike decreases more strongly the aggregate supply schedule of the economy. This is because

when taxes are high, a further rise is associated to a stronger marginal decline in labor supply and

hence to a stronger rise in equilibrium wages. These effects are depicted in the left panel of figure 8.

As a result a marginal rise in taxes will have, everything else equal, a stronger positive effect on

price inflation (as shown in the right panel of figure 8).

The third important structural change is a weakening of the “fiscal–space” channel, namely a

decline in the marginal tax revenues resulted from a given rise in taxes at the ZLB. This pattern is

depicted figure 9. This structural change implies that a marginal rise in taxes in the liquidity trap

creates less marginal fiscal space for a future output boom (i.e. the “fiscal–space” channel becomes

weaker), and thus, it has a smaller positive effect on current output.

To sum up, this section showed that, as the economy convergences to FL, the scope for policy

increases (since everything else equal, long-run tax distorsions that need to be corrected become

more severe), while policy ammunition, more specifically its fiscal component, may either increase

or decrease. Specifically, one the one hand, fiscal ammunition is positively affected via a rise in

the sensitivity of price inflation to taxes (i.e. an enhancement of the “cost-push” channel) which,

everything else equal, favors inflation stabilization at the ZLB. On the other hand, it is negatively
14To these direct effects adjoin the indirect ones via the the equilibrium inflation created via expansionary monetary

policy during the boom.
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affected by a weakening of the“fiscal space” channel that can be used to prop up output in the

liquidity trap.
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Figure 8: Proximity to fiscal limit and inflation sensitivity to a tax hike

Note: Y-axis: (i) left panel– increase in wage on the labor supply schedule in response to a one
percentage point increase in the tax rate, (ii) right panel– increase in price inflation in response to a
one percentage point increase in the tax rate at given output and future inflation
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Figure 9: Proximity to FL and marginal tax revenue (steady-state)

Provided the shock is persistent enough, it turns out that the loss in fiscal ammunition overcom-

pensates the advantages of greater price sensitivity to tax variations on the convergence path to the

23



FL. This can be inferred from figure 10 where, in the case of a transitory shock (depicted on the left

panel), welfare losses may decrease under optimal policy as the economy approaches fiscal limit

indicating a dominant positive effect of price sensitivity to tax variations in that region, while they

continuously increase in the case of a more persistent shock (depicted on right panel). Accordingly,

provided the shock is persistent enough, welfare losses significantly increase under optimal policy as

the economy converges to its FL.
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Figure 10: Welfare losses under optimal policy in response to a demand shock as the economy
converges to its fiscal limit (transitory shock in the left panel, persistent shock lasting six periods in
the right panel)

6.1.4 Responses under optimal policy as the economy approaches fiscal limit

Consistent with previous remarks, figure 11 shows how, for a persistent shock, output is less

stabilized in a liquidity trap as the economy comes closer to its FL. Black solid lines stand for zero

steady-state transfers, and hence for a position distant from the FL. Blue lines with circles stand

for an the intermediate distance from the FL with a steady-state transfer-to-GDP ratio of 15%

(already shown in figure 5), while red dashed lines stand for the FL case (which corresponds to a

steady-state transfer-to-GDP ratio of 30%). Note also how at the FL the policymaker uses instead

more “forward guidance” on monetary policy than when the economy was far away from it, so as to

encourage present consumption in the liquidity trap. Propping up output at the ZLB via additional
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forward guidance is however less effective, and hence current output is less stabilized at the ZLB15.

Figure 11: Responses to a persistent demand shock lasting 6 periods under optimal policy

Note: Y-axis: log- deviation from steady-state for output, inflation, public debt and the demand
shock, deviations from steady-state for the interest rate, the efficient rate, tax rate and tax income.
X-axis: quarters after the shock

15One may be puzzled by the decline in “promised” inflation on the convergence path to the FL. This pattern is
explained by the higher sensitivity of price inflation to the variation in taxes on this convergence path. Specifically,
closer to the fiscal limit, a (future) decline in taxes has stronger negative effects on equilibrium inflation, which
counteract the positive ones created via the promised expansionary monetary policy.
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Figure 12: Responses to a persistent demand shock lasting 10 periods under optimal policy

Note: Y-axis: log- deviation from steady-state for output, inflation, public debt and the demand
shock, deviations from steady-state for the interest rate, the efficient rate, tax rate and tax income.
X-axis: quarters after the shock
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The experiment depicted in figure 11 shows also that the loss in fiscal ammunition that can

be used to stabilize the economy in the short-run is more generally substituted by a longer span

of loose monetary policy after the shock. Specifically, it is not necessary for the economy to have

already reached its FL (left panel on the second row). Figure 12 shows that this substitution

pattern is even more salient for a more persistent shock lasting ten periods as opposed to six. The

gradual substitution of the “fiscal space” channel by “forward guidance” on monetary policy has

further adverse implications for the welfare policy outcome not taken into account in our optimal

design problem. Specifically, as pointed out in Eggertsson and Woodford (2006), the effectiveness of

“forward guidance” on monetary policy is intrinsically linked to the ability of the policymaker to

commit to future policy actions, and hence to a history-dependent policy. And this ability may be

subject to imperfections in practice. This is however less the case with the “fiscal space” channel.

The reason is that the size of the public debt is a state variable that naturally conditions future

policy. Hence, current fiscal policy can be used, in effect, to commit future policy to be more

expansionary, even if future policy is not conditioned on past developments, i.e. it is purely forward

looking. This implies that, in practice, as the economy approaches FL, the ZLB can become an

even more significant obstacle to macroeconomic stabilization than our current analysis reveals.

Apart from its harmful effects on the ability of the policymaker to stabilize the economy in the

short-run, the gradual loss in fiscal ammunition has also adverse consequences for its ability to

correct long-run distorsions. Specifically, figure 13 shows that, as the economy converges to FL, a

smaller share of initial long-run distortions are corrected under optimal policy (provided the initial

allocation is distorted enough)16. Consistently, figure 14 shows that the final long-run allocation

remains more distorted in the aftermath of the shock as the economy converges to its FL (provided

the initial allocation is distorted enough).
16Since the permanent decline in real debt, and hence in long-run taxes, is also due to the prolonged period of

below-trend interest rates which implies lower interest expenses, one may think that changes in optimal monetary
policy as the economy converges to the FL may also affect the magnitude of the long-run corrections. Note however,
that if anything, monetary policy becomes looser as the economy comes closer to its fiscal limit. This is because, as
previously showed, it substitutes for expansionary fiscal policy. Thus, we may expect, if anything, the changes in
monetary policy to have stronger, and not weaker, negative effects on permanent debt and hence allow for larger
corrections. Thus, the lower permanent decline in real debt must necessarily be due to the gradual decline in fiscal
space that can be used (i) directly to decrease permanently public debt, and (ii) indirectly, to erode the real value of
debt via its effects on the “promised” inflationary boom (since debt is nominal).

27



Figure 13: Correction applied to long-run distortion under optimal policy (persistent shock)

Figure 14: Final-long run distortion under optimal policy after a persistent demand shock

6.2 Technology shocks

Figure 15 shows that for positive technology shocks driving the economy in a liquidity trap, the

character of optimal policy is similar to the one for negative demand shocks. For ease of comparison,

the magnitude of the technology shock in figure 15 is normalized such that it implies an identical

decline in the natural real interest rate as the transitory negative demand shock previously discussed.

28



Figure 15: Responses to a transitory technology shock under optimal policy

Note: Y-axis: log- deviation from steady-state for output, inflation, public debt and the demand
shock, deviations from steady-state for the interest rate, the efficient rate, tax rate and tax income.
X-axis: quarters after the shock
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As in the case of demand shocks, when the policy rate is constrained by the ZLB, the policymaker

alleviates the effects of waining monetary ammunition by promising to sustain a “future boom” once

the real disturbance has dissipated via expansionary monetary and fiscal policy. And, as in the case

of demand shocks, taxes rise during the liquidity trap so as to put positive pressures on prices and

create fiscal space to finance the future “promised” tax cuts.
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Figure 16: Shift in the steady-state Laffer curve triggered by a rise in the technology parameter A
(solid line stands for baseline calibration, whereas the dotted line stands for higher values)

In contrast to demand shocks however, we can observe how, even when the economy is at fiscal

limit, the initial rise in taxes results in higher tax revenues, and hence in additional fiscal space that

can be used to “promise” the future output boom and to permanently correct long-run distortions.

This is because the positive technology shock, in contrast to the negative demand one, shifts upwards

the short-run Laffer curve of the economy. Figure 16 gives an intuition on this using the example of

steady-state Laffer curves. The figure also shows how the shift depends on the magnitude of the

shock: a larger shock induces a larger upward shift (right panel) than a smaller one (left panel). Note

however that even if a larger shock allows to create more fiscal space for a future fiscal expansion

and for permanent long-run allocation corrections, it also implies that the ZLB constraint is tighter

and hence that relatively more fiscal space is needed to mitigate its adverse effects.
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Figure 17: Welfare losses under optimal policy as the economy converges to its fiscal limit – case of
transitory technology shock

In the case of the transitory positive technology shock depicted in figure 15, the policymaker

gradually chooses to rise taxes less as the economy comes closer to fiscal limit, but that, despite

the smaller initial rise in taxes, inflation is better stabilized as the economy converges to its fiscal

limit (left panel on the second row). This is explained, as before, by the higher sensitivity of price

inflation to taxes when the economy is closer to its FL. This explains the decrease in welfare losses

as the economy moves upwards to its fiscal limit for certain initial position on the Laffer curve

(figure 17).

Figure 18 shows however that the policymaker chooses to correct a lower share of long-run

distorsions despite them being initially wider for initial positions on the Laffer curve relatively

close to the “fiscal limit”, most likely because of the weakening of the strength of the “fiscal space”

channel. As a result, as in the experiment with demand shocks, from a certain position on the Laffer

curve onwards, welfare losses increase “exponentially” as the economy approaches its fiscal limit.

Importantly however, under optimal policy, welfare losses in response to the transitory positive

technology shock (figure 17) are lower than in response to the transitory demand one (left panel in

figure 10) in the proximity of the FL17.
17The two shocks can be compared since they have been normalized so as to imply the same decline in the natural
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Figure 18: Correction applied to long-run distortion under optimal policy (transitory shock)

7 Concluding Remarks

We studied in this paper how the ZLB and the fiscal limit affect jointly the optimal monetary-fiscal

response to demand and technology shocks. We used for this purpose an extension of the basic NK

model with an endogenous fiscal limit. We abstracted away from both outright default on public

debt and outright monetary financing. Our analysis is relevant against the on-going simultaneous

decline in long-run interest rates, and convergence to fiscal limit in advanced economies. We mainly

contribute to the literature by studying how these two structural trends affect jointly optimal policy.

Our main results are twofold. First, in response to a negative demand shock, as the economy

converges to fiscal limit, the reduction in fiscal space restraints the extent of the future boom

that the policymaker can promise so as to encourage current consumption while the economy is in

the liquidity trap. Subsequently, dynamics become less inflationary, underutlization of productive

capacity can be less mitigated and welfare losses increase significantly under optimal policy. Second,

in response to positive technology shocks, the short-run Laffer curve shifts upwards. Thus, relatively

to demand shocks, the policymaker can attain a better welfare outcome in the proximity of the FL.

Going forward, we want first to study how our results change when we allow for government

rate of interest (i.e. the real rate of interest that the policymaker would have wanted to track in the absence of the
ZLB constraint).

32



expenditures as an additional policy instrument. Another more challenging future step is the analysis

of the optimal monetary-fiscal policy mix beyond the fiscal limit. Using our current framework, we

can see that, excluding outright default on debt, one available policy option is an increase in the

inflation target which would erode the real value of debt and of transfers (if transfers are made in

nominal terms instead) up to the point where the peak of the “Laffer curve” is reached again. But

would this option be optimal? Namely, would this option which affects all agents in the economy be

preferred to outright default on debt which affects only the elderly population (and is detrimental

to the sovereign credit record)? And how does this choice depend on the presence of the ZLB which,

by itself, may optimally require under certain conditions an increase in the inflation target? And if

increasing the inflation target is the joint optimal solution to restore fiscal sustainability and deal

with the ZLB, would optimal policy around a zero-inflation steady-state be the same as around a

positive one? These are a few of the research questions that we aim to tackle in an extension of our

setup in the future.
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9 Appendix

9.1 Relation between efficient rate and demand preference shocks

I assume the exogenous demand disturbance is of a similar nature as the one in Gaĺı (2015), Section

5.4. Specifically, the efficient rate remains constant to its steady-state level ρ > 0 up to (and

including) period 0. In period 1 it unexpectedly drops to −ρ < 0 (in the case of a negative shock),

or it unexpectedly increases to 3ρ < 0 (in the case of a positive shock), and remains at that level

for one period or for six periods. Afterwards it takes again its steady-state value ρ > 0. Once the

unexpected change in period 1 occurs, the subsequent path of the natural rate is assumed to be

known with certainty by all agents.

The efficient rate equals in the model ret = ρ + zt − Et{zt+1}, and hence its deviation from

steady-state equals r̂et = zt − Et{zt+1}.

• In the case of a one period shock zt = r̂et , where r̂et = −ρ− ρ = −2ρ for a negative shock, and

r̂et = 3ρ− ρ = 2ρ for a positive shock.

• In the case of a six period shock, for the negative shock r̂e6 = −2ρ implies z6 = −2ρ.

Furthermore, r̂e5 = z5 − z6 = −2ρ implies z5 = r̂e5 + z6 = −4ρ. Similarly, z4 = −6ρ, z3 = −8ρ,

z2 = −10ρ, z1 = −12ρ.

• In the case of a six period shock, for the positive shock r̂e6 = 2ρ implies z6 = 2ρ. Furthermore,

r̂e5 = z5 − z6 = 2ρ implies z5 = r̂e5 + z6 = 4ρ. Similarly, z4 = 6ρ, z3 = 8ρ, z2 = 10ρ, z1 = 12ρ.
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9.2 Deterministic steady-state

Household’s behaviour is described by

CσLϕ = (1− τ)W
P

(31)

Q = β (32)

C +Q
B

P
= Q+ (1− τ)W

P
L+ Div

P
+ T , (33)

the one of firms by

Y = AL1−α (34)

1 = M

1− α
W

P

L

Y
(35)

and the flow budget constraint of the public sector by

Q
B

P
= B

P
+
(

T − τ W
P
L

)
or, (36)

Qb̄ = b̄+
(
t̄− τ W

P

L

Y

)
(37)

Relations (35) and (37) imply that the tax rate needed to finance b̄ and t̄ equals:

τ =
M
[
b̄(1− β) + t̄

]
1− α (38)

Furthermore, (31), (34), (35) and the goods market clearing condition Y = C, imply that the

steady-state level of labor

L =
[
(1− τ)(1− α)M−1A1−σ

] 1
ϕ+σ+α(1−σ) (39)

is a decreasing function of τ (given in (38)) and structural parameters.

The steady-state values of all other values can now be computed using L in (40). In particular,

output equals

Y = A
[
(1− τ)(1− α)M−1A1−σ

] 1−α
ϕ+σ+α(1−σ) (40)
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(note that it is also a decreasing function of τ) and tax revenues

τ
W

P
L = τ(1− α)M−1Y = τ(1− α)M−1A

[
(1− τ)(1− α)M−1A1−σ

] 1−α
ϕ+σ+α(1−σ) (41)

Note that tax revenues are a concave function of τ .

For future reference, note in (35) that monopolistic market power distorsions can be corrected by

subsidizing firm employment at the rate ε−1, and financing these subsidies with lump-sum taxes. In

the context of our analysis, this would imply lower (net) real steady-state transfers to the household.

9.3 Steady-state Laffer curve with textbook calibration
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Figure 19: Steady-state Laffer curve with textbook calibration β = 0.99, ϕ = 5, θ = 0.75, α = 0.25,
ε = 9, σ = 1, b̄ = 2.4 (Gaĺı (2015))

9.4 Steady-state distorsion

The steady-state distorsion Φ is implicitly defined by

−Ul
Uc

= (1− Φ)∂Y
∂L
⇒ LϕCσ = (1− Φ)(1− α)Y

L
(42)

Using the good market clearing condition C = Y and the production function (34), we can express

the distorsion in terms of steady-state labor as

Φ = 1− Aσ−1Lϕ+σ+α(1−σ)

1− α , (43)
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and further, using the expression of steady-state labor in (40), exclusively in terms of the two

(steady-state) distorsionary sources- market power and distorsionary taxes:

Φ = 1− 1− τ
M

(44)

The higher the market power in the goods market, or the higher taxes, the larger the distorsion of the

steady-state allocation. When market-power distorsions are corrected (by subsidizing employment

at rate ε−1 and financing these subsidies with lump-sum taxes)

Φ = τ (45)

9.5 Welfare criterion large steady-state distorsions

A second order approximation around steady-state to the period-utility of the representative

household,

U(Ct, Lt;Zt) =
(
C1−σ
t − 1
1− σ − L1+ϕ

t

1 + ϕ

)
Zt, (46)

yields:

Ut − U ≈ UcC
∆Ct
C

+ UlL
∆Lt
L

+ 1
2UccC

2
(∆Ct

C

)2
+ 1

2UllL
2
(∆Lt

L

)2
+

+ UczC
∆Ct
C

∆Zt
Z

+ UlzL
∆Lt
L

∆Zt
Z

+ t.i.p.

where t.i.p. are terms independent of policy. Using further the goods market clearing condition

Ct = Yt, we get:

Ut − U
UcC

≈ ∆Yt
Y

+ UlL

UcC

∆Lt
L

+ 1
2
UccC

2

UcC

(∆Yt
Y

)2
+ 1

2
UllL

2

UcC

(∆Lt
L

)2
+

+ ∆Yt
Y

∆Zt
Z

+ UlL

UcC

∆Lt
L

∆Zt
Z

+ t.i.p.

≈ ∆Yt
Y

(
1 + ∆Zt

Z

)
+ UlL

UcC

∆Lt
L

(
1 + ∆Zt

Z

)
+ 1

2
UccC

2

UcC

(∆Yt
Y

)2
+

+ 1
2
UllL

2

UlL

UlL

UcC

(∆Lt
L

)2
+ t.i.p.
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Given the utility specification in (46), UccC2

UcC
= −σ and UllL

2

UlL
= ϕ, and hence:

Ut − U
UcC

≈ ∆Yt
Y

(
1 + ∆Zt

Z

)
+ UlL

UcC

∆Lt
L

(
1 + ∆Zt

Z

)
− σ

2

(∆Yt
Y

)2
+

+ ϕ

2
UlL

UcC

(∆Lt
L

)2
+ t.i.p.

Let Φ denote the size of the steady-state distorsion defined by MRS = (1 − Φ)MPL, with

MRS ≡ −Ul
Uc

the steady-state marginal rate of substitution and MPL ≡ (1− α)Y/L the steady-

state marginal product of labor18. The expression above can be written in terms of this distorsion

as:

Ut − U
UcC

≈ ∆Yt
Y

(
1 + ∆Zt

Z

)
− (1− Φ)(1− α)∆Lt

L

(
1 + ∆Zt

Z

)
− σ

2

(∆Yt
Y

)2

− ϕ(1− Φ)(1− α)
2

(∆Lt
L

)2
+ t.i.p.

Using the second order approximation of relative deviations in terms of log deviations Xt−X
X ≈

x̂t + 1
2 x̂

2
t , we can approximate the expression above by:

Ut − U
UcC

≈
(
ŷt(1 + ẑt) + 1

2 ŷ
2
t

)
− (1− Φ)(1− α)

(
l̂t(1 + ẑt) + 1

2 l̂
2
t

)
− σ

2 ŷ
2
t

− ϕ

2 (1− Φ)(1− α)l̂2t + ||O3
t ||+ t.i.p.

≈ ŷt(1 + ẑt) + 1− σ
2 ŷ2

t − (1− Φ)(1− α)l̂t(1 + ẑt)−

− 1 + ϕ

2 (1− Φ)(1− α)l̂2t + ||O3
t ||+ t.i.p.

A second order approximation of the labor market clearing condition (18) yields (e.g. Gaĺı (2015),

Chapter 4): l̂t = ŷt−at+dt
1−α with dt ≡ ε

2Θvari{pt(i)}, where Θ ≡ 1−α
1−α+αε , hence:

Ut − U
UcC

≈ Φŷt + 1
2

(
(1− σ)− (1− Φ)(1 + ϕ)

1− α

)
ŷ2
t − (1− Φ)dt+

+ (1− Φ)(1 + ϕ)
(1− α) atŷt + Φŷtẑt + t.i.p.+ ||O3

t ||

Ut − U
UcC

≈ Φŷt −
1
2uyyŷ

2
t −

1
2upvari{pt(i)}+ ξtuξ ŷt + t.i.p.+ ||O3

t || (47)

18Φ = 1− 1−τ
M
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with:

uyy ≡
(1− Φ)(1 + ϕ)

1− α − (1− σ)

up ≡ (1− Φ) εΘ

ξtuξ ≡ Φẑt + (1− Φ)(1 + ϕ)
(1− α) at

Accordingly, a second order approximation to households’ welfare losses expressed as a fraction of

steady-state consumption equals:

L = −E0

∞∑
t=0

βt
(
Ut − U
Uc C

)

= E0

∞∑
t=0

βt
(
− Φŷt + 1

2uyyŷ
2
t + 1

2upvari{pt(i)} − ξtuξ ŷt
)

+ t.i.p.+ ||O3
t ||

which using
∑∞
t=0 β

tvari{pt(i)} = θ
(1−βθ)(1−θ)

∑∞
t=0 β

tπ2
t (Woodford (2003), Chapter 6) and the

definition uπ ≡ up θ
(1−βθ)(1−θ) = (1− Φ) ελ , can be written as:

L = E0

∞∑
t=0

βt
(
− Φŷt + 1

2uyyŷ
2
t + 1

2uππ
2
t − ξtuξ ŷt

)
+ t.i.p.+ ||O3

t || (48)

Next, we follow the approach in Benigno and Woodford (2003) to eliminate the linear term

Φŷt. We use for this purpose a second order approximation of the aggregate supply relation. The

aggregate-supply relation can be written exactly as:

−log
(1− θΠe−1

t

1− θ

)
= e− 1

1 + eω

(
logKt − logFt

)
where: (49)

Kt ≡
∞∑
k=0

(θβ)kEt
{ 1

1− τt+k
M

1− α

(
Yt+k
At+k

) 1+ϕ
1−α

(
Pt+k
Pt

) e(1+ϕ)
1−α

}

Ft ≡
∞∑
k=0

(θβ)kEt
{
Uc,t+k

(
Pt+k
Pt

)e−1
Yt+k

}
ω ≡ 1 + ϕ

1− α − 1

A second order Taylor series for the left hand-side of (49) takes the form:

−log
(1− θΠe−1

t

1− θ

)
= θ

1− θ (e− 1)
{
πt + 1

2
e− 1
1− θπ

2
t + O(||ξ||3)

}
,
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whereas second order approximations for log(Kt) and log(Ft) imply:

K̂t + 1
2K̂t

2 + O(||ξ||3) = (1− θβ)Et
∞∑
T=t

(θβ)T−t
[
k̂t,T + 1

2 k̂
2
t,T

]
+ O(||ξ||3)

F̂t + 1
2 F̂t

2 + O(||ξ||3) = (1− θβ)Et
∞∑
T=t

(θβ)T−t
[
f̂t,T + 1

2 f̂
2
t,T

]
+ O(||ξ||3)

where:

k̂t,T ≡ k̂T + e(1 + ω)
T∑

s=t+1
πs, kT ≡ log

( 1
1− τT

M
1

1− α

(
YT
AT

) 1+ϕ
1−α

)

f̂t,T ≡ f̂T + (e− 1)
T∑

s=t+1
πs, fT ≡ log(UY,TYT ) = log(ZTY 1−σ

T )

A second order approximation of log(1− τt) gives:

log(1− τt) = log(1− τ) + (−1)τ
1− τ

∆τt
τ

+ 1
2(−1) −(τ)2

(1− τ)2 (−1)
(∆τt

τ

)2
+

+ O(||ξ||3)

= log(1− τ)− τ

1− τ τ̂t −
1
2

τ

(1− τ)2 (τ̂t)2 + O(||ξ||3),

Hence,

k̂T = 1 + ϕ

1− α

(
ŷT − aT

)
+ τ

1− τ τ̂t + 1
2

τ

(1− τ)2 (τ̂t)2 + O(||ξ||3) (50)

f̂T = zT + (1− σ)ŷT (51)

As shown by Benigno and Woodford (2004), the second order approximations of the right and

left hand sides of the aggregate supply relation (49) yield the following relation:

πt + 1
2
e− 1
1− θπ

2
t+

1
2(1− θβ)πtZt = 1− θ

θ

1− θβ
1 + ωe

[
(k̂t − f̂t) + 1

2(k̂2
t − f̂2

t )
]
+

+ βEtπt+1 + βEt

[1
2
e− 1
1− θπ

2
t+1

]
+ β

1
2(1− θβ)Etπt+1Zt+1

+ β
1
2e(1 + ω)Etπ2

t+1 + O(||ξ||3) (52)

where Zt ≡ Et
∞∑
T=t

(θβ)T−t
[
k̂t,T + f̂t,T

]

42



We define Vt ≡ πt + 1
2

(
e−1
1−θ + e(1 + ω)

)
π2
t + 1

2(1 − θβ)πtZt and use relations (50) and (51) to

compute:

k̂t − f̂t =
(
σ + α+ ϕ

1− α

)
ŷt + τ

1− τ τ̂t + 1
2

τ

(1− τ)2 (τ̂t)2 + t.i.p.+ O(||ξ||3)

1
2
(
k̂2
t − f̂2

t

)
= 1

2

[(1 + ϕ

1− α

)2
− (1− σ)2

]
ŷ2
t + 1

2

(
τ

1− τ

)2
(τ̂t)2 + (1 + ϕ)

1− α
τ

1− τ ŷtτ̂t

−
(1 + ϕ

1− α

)2
ŷtat − (1− σ)ŷtzt −

1 + ϕ

1− α
τ

1− τ τ̂tat + t.i.p.+ O(||ξ||3)

in order to write (52) as:

Vt = κ

{
c′xxt + 1

2x
′
tCxxt + x′tCξξt + 1

2cππ
2
t

}
+ βEtVt+1 + O(||ξ||3) + t.i.p.

where: κ ≡ νk
(
σ + α+ ϕ

1− α

)
, νk ≡

1− θ
θ

1− θβ
1 + ωe

c′x ≡
[

τ

1− τ

(
σ + α+ ϕ

1− α

)−1
1
]

xt ≡ [τ̂t ŷt]′

ξt ≡ [zt at]′

Cx ≡
[
τ(1 + τ)
(1− τ)2

(
σ + α+ ϕ

1− α

)−1 (1 + ϕ)
1− α

τ

1− τ

(
σ + α+ ϕ

1− α

)−1
;

(1 + ϕ)
1− α

τ

1− τ

(
σ + α+ ϕ

1− α

)−1 [(1 + ϕ

1− α

)2
− (1− σ)2

](
σ + α+ ϕ

1− α

)−1]
Cξ ≡

[
0, − τ

1− τ
1 + ϕ

1− α

(
σ + α+ ϕ

1− α

)−1
;

− (1− σ)
(
σ + α+ ϕ

1− α

)−1
−
(1 + ϕ

1− α

)2(
σ + α+ ϕ

1− α

)−1]
cπ ≡ e(1 + ω)κ−1

We can integrate the equation above forward from time t to obtain:

κ−1Vt =Et
∞∑
k=0

βk
{
c′xxt+k + 1

2x
′
t+kCxxt+k + x′t+kCξξt+k + 1

2cππ
2
t+k

}
(53)

+ O(||ξ||3) + t.i.p. (54)

Next, we determine a second order approximation to the intertemporal government solvency
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condition. The flow budget constraint of the government (10) implies:

Π−1
t

Bt−1
Pt−1

= Qt
Bt
Pt

+ st, st ≡ τt
Wt

Pt
Lt −T

where st is the government primary (real) surplus. This constraint can be iterated forward to get (after

imposing the government public solvency condition and using the households’ consumption/saving

equation):

Wt =
∞∑
k=0

βkEt{Uc,t+kst+k}, Wt ≡ Π−1
t

Bt−1
Pt−1

Uc,t (55)

A second order approximation of Uc,tst = ZtC
−σ
t st gives:

Uc,tst = Ucs+ Zs(−σ)C−σ−1∆Ct + ZC−σ∆st+

+ 1
2Zs(−σ)(−σ − 1)C−σ−2(∆Ct)2 + s(−σ)C−σ−1∆Zt∆Ct+

+ C−σ∆Zt∆st + Z(−σ)C−σ−1∆Ct∆st + O(||ξ||3) + t.i.p.

= C−σs

[
1− σŷt + 1

2σ
2ŷt

2 + ∆st
s
− σŷtẑt +

(
∆Zt − σ

∆Yt
Y

)∆st
s

]
+ O(||ξ||3) + t.i.p.

Using the labor supply relation (5) and the goods market clearing condition Yt = Ct we can write

the government primary surplus as:

st = 1
(τ−1
t − 1)

Y σ
t L

ϕ+1
t −T ,

which can be approximated up to second order by:

st =s+ τY σL1+ϕ

(1− τ)2
∆τt
τ

+ σY σL1+ϕ

τ−1 − 1
∆Yt
Y

+ (1 + ϕ)Y σLϕ+1

τ−1 − 1
∆Lt
L

+

+ Y σL1+ϕ(1− τ)−3τ2
(∆τt

τ

)2
+ 1

2
σ(σ − 1)Y σL1+ϕ

τ−1 − 1

(∆Yt
Y

)2
+

+ 1
2

(1 + ϕ)ϕY σL1+ϕ

τ−1 − 1

(∆Lt
L

)2
+ τσY σL1+ϕ

(1− τ)2
∆τt
τ

∆Yt
Y

+

+ τ(1 + ϕ)Y σL1+ϕ

(1− τ)2
∆τt
τ

∆Lt
L

+ (1 + ϕ)σY σL1+ϕ

τ−1 − 1
∆Yt
Y

∆Lt
L

+

+ O(||ξ||3)
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⇒ s−1∆st =ωτ τ̂t + ωττ τ̂
2
t + ωyŷt + ωyyŷ

2
t + ωπvari{pt(i)}+ ωτy τ̂tŷt+

+ ωyaŷtat + ωτaτ̂tat + ωaat + O(||ξ||3)

with ωτ ≡ s−1 τY
σL1+ϕ

(1− τ)2 = (s/Y )−1 τ

1− τM−1(1− α)

ωττ ≡ s−1
[1

2
τY σL1+ϕ

(1− τ)2 + Y σL1+ϕ(1− τ)−3τ2
]

= (s/Y )−1 1− α
M

τ

1− τ

(1
2 + τ

1− τ

)
ωy ≡ s−1

[
σY σL1+ϕ

τ−1 − 1 + (1 + ϕ)Y σLϕ+1

(τ−1 − 1)(1− α)

]
= (s/Y )−1 (1− τ)(1− α)

M (τ−1 − 1)

(
σ + 1 + ϕ

1− α

)
ωyy ≡ s−1

[1
2
σY σL1+ϕ

τ−1 − 1 + 1
2

(1 + ϕ)2Y σLϕ+1

(τ−1 − 1)(1− α)2 + 1
2
σ(σ − 1)Y σL1+ϕ

τ−1 − 1 +

+ (1 + ϕ)σY σL1+ϕ

(τ−1 − 1)(1− α)

]

= (s/Y )−1 (1− τ)(1− α)
(τ−1 − 1)M

[1
2

(1 + ϕ)2

(1− α)2 + 1
2σ

2 + σ(1 + ϕ)
1− α

]
ωπ ≡ s−1 (1 + ϕ)Y σLϕ+1

(τ−1 − 1)(1− α)
ε

2Θ

= (s/Y )−1 (1 + ϕ)(1− τ)
(τ−1 − 1)M

ε

2Θ , Θ ≡ 1− α
1− α+ αε

ωτy ≡ s−1
[
τσY σL1+ϕ

(1− τ)2 + τ(1 + ϕ)Y σL1+ϕ

(1− τ)2(1− α)

]
= (s/Y )−1 τ

1− τ
1− α
M

(
σ + 1 + ϕ

1− α

)
ωya ≡ −s−1

[ (1 + ϕ)Y σLϕ+1

(τ−1 − 1)(1− α)2 + (1 + ϕ)ϕY σL1+ϕ

(τ−1 − 1)(1− α)2 + (1 + ϕ)σY σL1+ϕ

(τ−1 − 1)(1− α)

]
= −(s/Y )−1 (1 + ϕ)(1− τ)

(τ−1 − 1)M

(
σ + 1 + ϕ

1− α

)
ωτa ≡ −s−1 τ(1 + ϕ)Y σL1+ϕ

(1− τ)2(1− α)

= −(s/Y )−1 τ

1− τ
1 + ϕ

M

ωa ≡ −s−1 (1 + ϕ)Y σL1+ϕ

(1− α)(τ−1 − 1) = −(s/Y )−1 (1 + ϕ)(1− τ)
(τ−1 − 1)M
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So, Uc,tst = C−σs

[
ωτ τ̂t + (ωy − σ)ŷt + 1

2(σ2 + 2ωyy − 2σωy)ŷt2+

+ 1
22ωττ τ̂2

t + 1
22(ωτy − σωτ )τ̂tŷt + (ωya − σωa)ŷtat+

+ (ωy − σ)ŷtzt + ωτaτ̂tat + ωτ τ̂tzt + ωπvari{pt(i)}
]
+

+ O(||ξ||3) + t.i.p.

A second order approximation of Wt in (55) thus yields:

∆Wt =
∞∑
k=0

βkEt

{
C−σs

[
ωτ τ̂t+k + (ωy − σ)ŷt+k + (1

2σ
2 + ωyy − σωy)ŷ2

t+k+

+ ωττ τ̂
2
t+k + (ωτy − σωτ )τ̂t+kŷt+k + (ωya − σωa)ŷt+kat+k+

+ (ωy − σ)ŷt+kzt+k + ωτaτ̂t+kat+k + ωτ τ̂t+kzt+k + ωπvari{pt+k(i)}
]}

+ O(||ξ||3) + t.i.p.,

which can be further written as:

∆Wt =C−σs
[
ωτ τ̂t + (ωy − σ)ŷt + 1

2(σ2 + 2ωyy − 2σωy)ŷt2 + 1
22ωττ τ̂2

t +

1
22(ωτy − σωτ )τ̂tŷt + (ωya − σωa)ŷtat + (ωy − σ)ŷtzt + ωτaτ̂tat+

+ ωτ τ̂tzt + ωπvari{pt(i)}
]

+ βEt∆Wt+1 + O(||ξ||3) + t.i.p.,

and, dividing by W = sUc
(1−β) and using the notation W̃t ≡ Wt−W

W , as:

W̃t =(1− β)
[
b′xxt + 1

2x
′
tBxxt + x′tBξξt + ωπvari{pt(i)}

]
+ βEt

{
W̃t+1

}
+ O(||ξ||3) + t.i.p.

with b′x ≡ [ωτ (ωy − σ)]

Bx ≡ [2ωττ (ωτy − σωτ ); (ωτy − σωτ ) (σ2 + 2ωyy − 2σωy)]

Bξ ≡ [ωτ ωτa;(ωy − σ) (ωya − σωa)]

Integrating this equation forward and using:

∞∑
t=0

βtvari{pt(i)} = θ

(1− βθ)(1− θ)

∞∑
t=0

βtπ2
t
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from Woodford (2003), Chapter 6, we obtain:

(1− β)−1W̃t =Et
∞∑
k=0

βk
[
b′xxt + 1

2x
′
tBxxt + x′tBξξt + 1

2bππ
2
t

]
+

+ O(||ξ||3) + t.i.p. (56)

with bπ ≡ 2ωπ θ
(1−βθ)(1−θ) . We can now express the linear term in (47) in terms of quadratic terms

by combining (53) with (56). We do so by finding ν1 and ν2 such that:

ν1b
′
x + ν2c

′
x ≡ [0 Φ],

namely ν2 ≡ Φ
[
1− τ(ωy − σ)(1− α)

(1− τ)ωτ [σ(1− α) + α+ ϕ]

]−1

ν1 ≡ −
τ(1− α)

(1− τ)ωτ [σ(1− α) + α+ ϕ]ν
2

These two values allow to write:

Et

∞∑
k=0

βkΦŷt+k = Et

∞∑
k=0

βk[ν1b
′
x + ν2c

′
x]xt+k

= −Et
∞∑
k=0

βk
[1

2x
′
t+kDxxt+k + x′t+kDξξt+k + 1

2dππ
2
t+k}

]
+ ν1(1− β)−1W̃t + ν2κ

−1Vt + O(||ξ||3) + t.i.p.

with Dx ≡ ν1Bx + ν2Cx

Dξ ≡ ν1Bξ + ν2Cξ

dπ ≡ ν1bπ + ν2cπ

Replacing this expression in (48), we get the following quadratic expression for welfare:

W L = E0

∞∑
t=0

βt
(1

2x
′
tQxxt + x′tQξξt + 1

2qππ
2
t

)
+ T0 + O(||ξ||3) + t.i.p.
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with Qx ≡
[
D11
x D12

x ;D21
x D22

x + uyy
]

Qξ ≡
[
D11
ξ D12

ξ ;D21
ξ − Φ D22

ξ −
(1− Φ)(1 + ϕ)

1− α
]

qπ ≡ dπ + uπ

T0 ≡ −ν1(1− β)−1W̃0 − ν2κ
−1V0

which can be rephrased in terms of deviations from a target level of output as:

W L = E0

∞∑
t=0

βt
(1

2Q
22
x ỹ

2
t + 1

2Q
11
x τ̂

2
t +Q12

x ỹtτ̂t + ξτt τ̂t + 1
2qππ

2
t

)
+

+ T0 + O(||ξ||3) + t.i.p.

where ỹt ≡ ŷt − ŷ∗t , ŷ∗t ≡ −
Q21
ξ

Q22
x
zt −

Q22
ξ

Q22
x
at and ξτt ≡

(
Q11
ξ −

Q12
x Q

21
ξ

Q22
x

)
zt +

(
Q12
ξ −

Q12
x Q

22
ξ

Q22
x

)
at.

Following Eggertsson and Woodford (2004), we will rank policies in terms of the implied value

of the discounted quadratic loss function:

W L = E0

∞∑
t=0

βt
(1

2Q
22
x ỹ

2
t + 1

2Q
11
x τ̂

2
t +Q12

x ỹtτ̂t + ξτt τ̂t + 1
2qππ

2
t

)

Because this loss function is purely quadratic it is possible to evaluate it to second order using

only a first order approximation to the equilibrium evolution of inflation and output under a given

policy. As shown in Figure 20, Q11
x and Q12

x are lower than 10−4 under baseline calibration on

the convergence path to the fiscal limit. Thus, variations in the terms 1
2Q

11
x τ̂

2
t and Q12

x ỹtτ̂t are

approximate zero up to a second order, and we can ignore them.The welfare criterion we’ll thus use

thereafter writes

W L = E0

∞∑
t=0

βt
(1

2Q
22
x ỹ

2
t + xiτt τ̂t + 1

2qππ
2
t

)
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Figure 20: Policy problem and the convergence to the long-run fiscal limit

9.6 Sensitivity Analysis
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