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Abstract

We document the recent advent of big tech in finance and examine its impact on the
macroeconomy. We build a model where big tech facilitates matching between sellers and buyers
on an e-commerce platform and extends loans to firms. Big tech reinforces credit repayment with
the threat of exclusion from the platform, while bank credit is secured against collateral. The
calibrated model delivers three main results: an increase in the efficiency of big tech raises the
value for firms of trading on the platform and the availability of big tech credit, with the positive
impact on output being limited by the distortionary nature of the fees; big tech credit mitigates
the response of credit and output to an aggregate shock; big tech credit acts as a “spare tyre” in
the face of adverse financial shocks, providing an alternative source of finance but also reducing
the contraction in bank credit.
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1 Introduction

New technologies are rapidly transforming the financial landscape. Since the Global Financial Crisis,

regulatory changes and advances in artificial intelligence have led to a substantial increase in the

market-share of nonbanks, including companies specialised in technology-enabled financial services

(fintech) and large technology firms (big tech). While fintech companies are set up to operate

primarily in financial services, big tech firms — such as Alibaba, Amazon, Facebook or Mercado

Libre — offer financial services as part of a much wider set of activities, predominantly oriented

towards information technologies and data consulting.

Improved data availability and technological advantages have led big tech firms to exploit

synergies across the different activities and further expand their business in financial services.

The initial focus on payment services has progressively extended into services related to wealth

management, consumer credit and lending to small and medium enterprises. As a result, big tech

credit has increased its relevance as source of non-bank funding. The total amount of credit extended

by big tech and fintech firms globally increased from the USD 20 billion in 2013 to USD 756 billion

in 2019. Fintech credit amounted to almost the totality until 2016, but big tech credit has overcame

fintech flows since 2019, becoming twice as large. Furthermore, the pace of increase in big tech

credit has exceeded that of bank credit in some countries. For example, during 2022-23, big tech

credit in China recorded an average annual growth rate of 35%, compared to 6% for bank credit.

Estimates based on major big tech firms indicate credit flows might have exceeded 7% of GDP in

2023 in China (Figure 1). Big tech credit has still remained of limited importance in the US, but

has the potential to grow very rapidly should related financial regulation become less stringent.1

The changes brought by big tech firms to financial intermediation can have important bearings

for macroeconomic and financial stability. Big tech relies on the collection and use of vast troves of

data to solve agency problems. Credit scoring generated using machine learning and big data are

able to identify firms’ creditworthiness with more precision than traditional credit bureau ratings

(Bazarbash (2019) and Frost et al. (2020)). These features can mitigate information frictions and
1One major reason for the limited relevance of big tech’s lending activity in the US is stringency of regulation.

Online lending must comply with federal and state laws, which limits big tech firms from obtaining a banking charter
(Barakova, Ehrentraud, and Leposke (2024)). This is an impediment to the extension of credit by the big tech if not
in partnership with a bank. Regulation in China differs as it restricts big tech firms from holding a controlling share
in digital banks but does not prevent them from extending credit.

2



enhance economic efficiency.2 Moreover, the threat of being banned from the e-commerce platform

or even having one’s reputation tarnished serves as an extra-legal but highly effective means of

enforcement of financial contracts for big tech companies (Gambacorta, Khalil and Parigi (2022)).3

The reduced need for firms to pledge collateral in loan contracts can change the transmission of

aggregate shocks through the response of credit supply. For instance, a monetary policy shock can

affect credit supply less via asset prices (the traditional “collateral channel” à la Kiyotaki and Moore

(1997)), and more via repayment incentives within the big tech’s platform. Beyond macroeconomic

stability, the availability of big tech credit can possibly affect also financial stability. Big tech credit

can complement or substitute traditional bank lending, with repercussion for aggregate credit and

economic activity in the presence of aggregate shocks.
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Figure 1: Big tech credit in China
Notes: The bars report the yearly flows of big tech credit in China. The dot report the flows in percentage of GDP.
Due to data availability, the bars for the period 2021–23 are based on the rate of growth of the flows of a representative
subset of big tech firms. Source: Cornelli, Frost, Gambacorta, Rau, Wardrop, and Ziegler (2023); authors’ calculations.

Our paper sheds light on these channels and explores the macroeconomic impact of big tech’s

entry into financial intermediation. We first document the growing role of big tech companies in

financial intermediation, focusing on the distinguishing features of their lending activity compared

to the credit extension by banks. Motivated by the empirical evidence, we develop a model to

help rationalize these facts and predict how big tech credit may impact economic activity, the
2Big tech is characterized by a mutually reinforcing feedback loop which helps increase the speed and accuracy

with which the platform connects buyers and sellers. The higher the efficiency of the platform in matching clients, the
more seamless and convenient the platform is for users, and the more likely they are to use it for transactions (Boissay
et al. (2021)).

3Numerous documented cases from China show that when a vendor defaults from Alibaba credit, their digital
stores in Taobao (Alibaba) is permanently shut down and he has difficulties to switch to other big tech platforms
because of reputation effects (https://business.sohu.com/20130717/n381836247.shtml (in Chinese)).
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transmission of aggregate shocks and financial stability going forward.

In our framework, a big tech platform facilitates the search and matching between intermediate

goods firms and final goods firms, and extends working capital loans to the former. Intermediate

goods firms may finance their working capital with both secured bank credit and big tech credit,

but cannot commit to repay their loans. The central difference between big tech credit and bank

credit relates to borrowers’ opportunity cost of default. Firms that default on bank credit lose

their physical collateral (real estate). In contrast, those that default on big tech credit lose access

to the big tech’s e-commerce platform, and hence their future profits (“network collateral”). An

incentive compatible contract thus limits the total amount of credit to the sum of physical and

network collateral. Nominal wages are sticky, and monetary policy affects the real economy.

We calibrate the model on US data. The baseline economy is therefore one where the share of

big tech credit is approximately zero and the only available funding source is bank credit. We then

analyse alternative economies where big tech credit becomes available and its share progressively

increases. The model delivers three main sets of results.

First, an expansion in big tech’s activities in the long-run, as captured by a rise in matching

efficiency on the e-commerce platform, increases the value for firms of trading on the platform and

the availability of big tech credit. This in turn relaxes financing constraints and raises firms’ output,

driving production closer to its efficient level. The efficiency gains are nonetheless limited by the

distortionary nature of the proportionl fees collected from platform users.

Second, the responses of total credit and output to aggregate shocks over the business cycle

ultimately depend on two factors: the reaction of network collateral and physical collateral to the

aggregate shock, and the share of big tech lending in total credit. We show that these two factors

are affected by the matching efficiency between sellers and buyers on the e-commerce platform.

Consequently, the overall impact of big tech credit on macroeconomic fluctuations varies with this

structural parameter.

Third, the entry of big tech in financial intermediation contributes to financial stability by

shielding the economy from the impact of adverse financial shocks that reduce the supply of bank

credit. By mitigating the impact of the shock on the price of capital and its collateral value, the

availability of big tech credit reduces the negative impact of the adverse financial shock on bank
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loans and provides a “spare tyre” for the economy, preventing a larger contraction of total credit

and real activity.

The paper proceeds as follows. Section 2 reviews the related literature. Section 3 describes the

stylised facts on big tech credit. Section 4 describes our theoretical framework with a special focus

on the dual role of big tech as e-commerce platform and financial intermediary. Section 5 describes

the parametrization of the model. Section 6 shows the steady-state equilibrium as a function of the

matching efficiency between sellers and buyers on the platform. Section 7 studies the effects of big

tech credit on the dynamic responses to aggregate shocks and on financial stability through the

supply of credit. Section 8 concludes.

2 Related literature

Our paper contributes to the literature on the financial accelerator where physical collateral plays a

crucial role in the amplification of macroeconomic fluctuations and the transmission of monetary

policy (e.g. Gertler and Gilchrist (1994), Kiyotaki and Moore (1997), Iacoviello (2005)). The

collateral channel was a relevant driver of the Great Depression (Bernanke (1983)), and of the more

recent financial crisis (Mian and Sufi (2011), Bahaj, Foulis, Pinter, and Surico (2022), Ottonello

and Winberry (2020) and Ioannidou, Pavanini, and Peng (2022)). Our paper contributes to this

literature by analysing how big techs’ use of big data for credit scoring and of network collateral

instead of physical collateral to enforce credit repayment affect the link between asset prices, credit

and the business cycle.

In our setup, the supply of big tech credit is ultimately constrained by firms’ expected profits.

Our analysis therefore also relates to the literature on the macroeconomic effects of intangible

collateral (e.g. Amable, Chatelain, and Ralf (2010), Nikolov (2012)), as well as of earnings-based

borrowing constraints (e.g. Drechsel (2023), Drechsel and Kim (2024), Ivashina, Laeven, and

Moral-Benito (2022), Lian and Ma (2021), Holmstrom and Tirole (1997)). One distinguishing

feature of borrowing limits on big tech credit compared to those imposed by earnings or intangible

collateral is their link to the level of matching efficiency on the e-commerce platform. Specifically,

our analysis shows that the way big tech credit affects the macro-economy depends on both the

network collateral (the intangible value of the firm) and the matching efficiency of the platform,

which increases as big techs acquire more data on their users and expand their activities.
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We also relate to a recent literature that evaluates the role of trade credit in amplifying financial

shocks (Bocola and Bornstein (2023), Cunat (2007), Altinoglu (2021), Luo (2020)). Trade credit is

sustained in equilibrium by reputation because customers lose the relationship with their suppliers

in case of a default. Similarly, in our setup, big tech credit is enforced by the threat of exclusion of

trading firms on the e-commerce platform.

The paper further connects to the literature on financial innovation and inclusion by showing

theoretically how a rise in matching efficiency between buyers and sellers on commercial platforms

can lead to an overall expansion of credit supply. The empirical evidence suggests that fintech

credit and big tech credit are growing where the current financial system is not meeting demand

for financial services (Bazarbash (2019), Haddad and Hornuf (2019), Croxson, Frost, Gambacorta,

and Valletti (2023), Hau, Huang, Shan, and Sheng (2021)). Beck, Gambacorta, Huang, Li, and Qiu

(2022) find that creating a digital payment footprint enables small firms to access credit from big

tech companies, and that this has spillover effects for their ability to access bank credit. Similar

findings are uncovered by Frost, Gambacorta, Huang, Shin, and Zbinden (2019) using data from

Mercado Credito, which provides credit lines to small firms in Argentina on the e-commerce platform

Mercado Libre.

Finally, our paper belongs to the novel literature on the impact of new financial technologies

on the transmission of monetary policy shocks. In contrast to our paper, contributions to this

literature have been so far empirical and have focused on China. In particular, Hasan, Kwak, and Li

(2024) estimate an interacted panel-VAR with monetary policy shocks and regional macroeconomic

data for China, and conclude, inter alia, that the provision of credit by AntGroup, the financial

arm of the big tech company Alibaba, has relaxed firms’ financial constraints, and has made real

activity and inflation less sensitive to monetary policy. In another recent paper, Huang, Li, Qiu,

and Yu (2023) estimate that for firms already using actively both bank credit and big tech credit

from AntGroup, the two types of credit are equally sensitive to the interbank rate. Finally, Cornelli,

De Fiore, Gambacorta, and Manea (2024) focus more generally on fintech credit which covers all

credit activity facilitated by electronic (online) platforms that are not operated by commercial

banks. Based on a cross-country panel-VAR analysis, they find that fintech credit has not shown

the strong and significant response to monetary policy observed with traditional bank credit.
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3 Facts about big tech

Over the last decade, big tech platforms have expanded their activity globally and started venturing

into credit provision.

3.1 Expansion of e-commerce and big tech credit

Global e-commerce sales have risen rapidly. Online orders increased from $1.5 trillion in 2017 to $3.6

trillion in 2022, amounting to nearly 3.6% of global output. The global share of retail e-commerce

sales in total retail sales rose from 12% in 2018 to 20% in 2023. In China, this share rose over the

same period from about 30% to more than 45%. During the period 2017-19, around 84% of global

online transactions were among firms - that is, business-to-business (B2B) transactions.

Due to large profits, big tech firms have a substantial amount of liquidity they can use to

finance lending to firms and consumers. Boissay, Cornelli, and Gambacorta (2019) show that big

tech firms are more profitable and better capitalised than global systemically important financial

institutions (G-SIFIs) and have a larger amount of assets in liquid form. Pre-pandemic, the average

earning-to-asset ratio for big techs was 24%, against 4% for G-SIFIs. The larger amount of profits

was also reflected in a higher equity-to-total asset ratio (52% against 8%) and cash-to-total asset

ratio (11% against 7%).

A substantial part of big tech revenues comes from fees that are charged for different services,

including platform access fees for third-party merchants and consumers, subscription fees for

premium services, and advertising fees for reaching a wider audience. E-commerce platform fees

are typically divided in a fixed component and a variable one. The fixed fees cover a number of

services provided by the platform for product advertisement. The variable fee is a percentage of

the sale price charged by big tech firms to third-party merchants for using their platforms to reach

customers. Table 1 reports the fees’ structure for a selected number of big techs and shows that the

average variable platform fee is around 8%.

Big tech credit differs from bank credit along several dimensions. It is not secured against

physical collateral and has a shorter maturity than bank credit. For the case of China, big tech

credit has an average maturity of less than one year and is typically renewed several times (Beck,

Gambacorta, Huang, Li, and Qiu (2022)). While two thirds of big tech credit has a maturity of
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one year or less, this share drops to 43% for bank credit. Similar characteristics are detected for

Mercado Libre in Mexico (Frost, Gambacorta, Huang, Shin, and Zbinden (2019)).

Fixed Variable
E-commerce platform Fixed Fee Variable Fee Average Average Min Max

Amazon $0-$39 6% to 45% 19.5 15 6 45

AliExpress 0 5-10% of selling price 0 7.5 5 10

Shopify $5 to $299 2.4% to 5% + 30c per sale 150 3.7 2.4 5

E-bay 250 items free then $0.35 each 2% to 12.25% of price 0 7.25 2 12.5

Etsy $0.20 per item 6.5% of price 0 6.5 6.5 6.5

Walmart 0 6% to 15% 0 10.5 6 15
Average 8 2 45

Table 1: E-commerce platform fees

Using micro data for Chinese firms for the period 2017-19, Gambacorta et al. (2022) document

that big tech credit does not correlate with local business conditions and house prices when controlling

for demand factors; instead, it reacts strongly to changes in firm characteristics, such as transaction

volumes and network scores used to calculate firm credit ratings. By contrast, both secured and

unsecured bank credit react significantly to local house prices, which incorporate useful information

on the environment in which clients operate and their creditworthiness. We extend the analysis

using macroeconomic data for China and the US and covering a more extended period of time, ie

2013-2020. As shown in Table 2, our results confirm their findings. In both regions, bank credit is

more correlated to house prices than big tech credit, the opposite being true for e-commerce sales.

China United States
Big tech credit to house price 0.56 0.18
Bank credit to house price 1.40∗∗∗ 1.02∗∗∗

Big tech credit to e-commerce sales 5.39∗∗∗ 3.75∗∗∗

Bank credit to e-commerce sales 0.39∗∗∗ 0.25∗∗∗

Table 2: Credit elasticity to house prices and to e-commerce sales (macro data)
Notes: Unconditional elasticities. Estimation period 2013-2020. *** Significance at the 1% level. Sources: data on big
techs are from Cornelli, Frost, Gambacorta, Rau, Wardrop, and Ziegler (2023), on e-commerce sales are from Statista
and on house prices are from the BIS.
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3.2 Estimated effects of monetary policy shocks

The availability of big tech credit reduces the need for firms to pledge collateral in loan contracts.

As our model will show, the response of credit supply to an aggregate shock depends on the strength

of the reaction of asset prices (the “collateral channel”) and firm profits (the “network channel”).

To discipline the model, we provide evidence on the relative strength of the two channels in the US.

To do so, we estimate the dynamic responses of log-transformed real e-commerce sales and

log-transformed real commercial property prices to monetary policy on US quarterly data, using

Jordà (2005)’s local projection method. For each forecast horizon h = 0, .., H − 1 we run a distinct

regression for a given dependent variable y (either the log-transformed real commerce sales, or the

log-transformed real commercial property prices) on a high-frequency identified monetary policy

surprise (mpst) and a vector of control variables xt:

yt+h = αh + βh · mpst + Ah · xt + et+h, (1)

Here the forward term yt+h captures the value of the dependent variable h periods after the monetary

policy shock, the coefficient βh gives the response of the dependant variable at time t + h to a shock

at time t, Ah is the coefficient matrix of control variables at horizon h (to be described shortly),

and et+h is the regression residual at horizon h. We report Newey-West standard errors to account

for serial correlation.4

Following Ramey (2016), we include in the vector of control variables xt lags of the dependant

variable, lags of the monetary policy surprise, contemporaneous and lagged values of the log-

transformed CPI, of the unemployment rate, of the log-transformed industrial production, the

Wu-Xia shadow federal funds rate, and further add to this list the Gilchrist and Zakraǰsek (2012)

equity finance premium as suggested by Caldara and Herbst (2019). The number of lags is chosen

optimally according to the SBIC information criteria and equals one. Our estimation period runs

from 1999:Q4-2016:Q2 because the series of e-commerce sales series begins in 1999:Q4 and that of
4Commercial property prices are the commercial real estate prices available in the FRED database of the Federal

Reserve Bank of St. Louis. E-commerce sales are the retail sales (total excluding food services, current prices) for the
United States from the US Census Bureau Data. Both series are quarterly, seasonally adjusted and deflated using the
2010 CPI. We use the high frequency identified monetary policy surprises derived by Jarociński and Karadi (2020).
These monetary policy surprises are constructed from surprises in the 3-month fed funds futures to measure changes in
expectations about short term interest rates around Federal Open Market Committee (FOMC) announcements, and
are corrected for “information channel” biases using sign restrictions. The high frequency monetary policy surprises
are converted to quarterly series by summing observations within each quarter.
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high-frequency monetary policy surprises ends in 2016:Q2.

(a) Commercial property prices (real) (b) E-commerce sales (real)
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Figure 2: Estimated dynamic responses to an unexpected monetary policy tightening
Notes: Shown are the coefficients βh in the local projection regression (1) for h = 0, ..., 16. The unexpected monetary
tightening is an unexpected 25 basis points rise in the policy rate.

Figure 2 reports the dynamic responses of real commercial property prices (left panel) and

e-commerce sales (right panel) to a 25 bps monetary policy tightening. The estimates show higher

responsiveness on impact of commercial property prices relative to e-commerce sales. The stronger

reaction of commercial property prices compared to that of real activity is consistent with estimates

based on FAVAR models (e.g. Eickmeier and Hofmann (2013)).

4 Model

The model is characterized by three main building blocks: credit frictions in the production sector,

search and matching along the supply chain, and nominal rigidities in the form of sticky wages.5

When search frictions and credit frictions are set to zero, the model collapses to the basic three

equation New Keynesian (NK) model with sticky wages.6

5See Cahuc, Carcillo, and Zylberberg (2014) for a description of search and matching frameworks applied to labor
markets, and Trigari (2009) and Gaĺı (2010) for monetary (New Keynesian) models incorporating them. See De Fiore
and Tristani (2013), Bernanke, Gertler, and Gilchrist (1999), Iacoviello (2005) or Manea (2020) for New-Keynesian
models studying how credit frictions affect the transmission of monetary policy and of business cycle shocks. Since
credit is only used to finance working capital, sticky wages are necessary for credit frictions to amplify the response of
output to business cycle shocks, and hence, for the model to feature a financial accelerator (e.g. see Manea (2020)).

6We assume that sticky wages are the only source of nominal rigidities in the model. We do so to avoid nominal
determinacy issues which may arise in the presence of both sticky prices and wages in models like ours where all firms
are credit–constrained (see e.g. Manea (2020)).
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The model economy is populated with: (1) a large number of identical households who consume,

invest and work, (2) intermediate goods firms which produce using labor and capital, (3) final goods

producers (“retailers”) which use intermediate goods as inputs, (4) a big tech firm which facilitates

transactions between intermediate goods firms and retailers, and extends credit to the former, (5)

banks which provide loans secured against physical capital to firms, (6) a government which issues

risk–free nominal bonds, and (7) a central bank which sets the nominal interest rate.

Firms sell intermediate goods to retailers via a big tech e-commerce platform where buyers

and sellers need to search for and match with one another. Intermediate goods firms finance their

working capital in advance of sales with both secured bank credit and big tech credit.

4.1 Households

The economy is populated by a large number of identical infinitely-lived households. Each household

is made up of a continuum of members, each specialized in a different labor service indexed by

j ∈ [0, 1]. Income is pooled within each household. A typical household chooses each period how

much to consume Ct and how much to invest in nominal risk–free public bonds Bt and equity Et to

maximize intertemporal utility,

E0

{ ∞∑
t=0

Ztβ
t
(

C1−σ
t − 1
1 − σ

− χ

∫ 1

0

Lt(j)1+φ

1 + φ
dj

)}

subject to the sequence of budget constraints

PtCt + Bh
t + EtQ

e
t ≤

∫ 1

0
Wt(j)Lt(j)dj + Bh

t−1(1 + it−1) + EtD
e
t + Et−1Qe

t + Υt (2)

for t = 0, 1, 2..., taking employment choices Lt(j) and labor income
∫ 1

0 Wt(j)Lt(j)dj as given.

Individually, each household has no influence on nominal wage rates Wt(j) set by unions, or

employment levels Lt(j) determined by firms. Pt is the price of a final consumption good, Qe
t is

the unit price of equity, it is the nominal interest rate on public bonds bought at t, De
t is the

dividend paid on equity, Υt ≡ Υg
t + Υp

t + Υb
t are aggregate (net) lump-sum transfers received by

the households, where Υg
t are lump-sum net transfers by the government, Υp

t are lump-sum net

pay–outs by the private sector (i.e. by intermediate goods firms and retailers) and Υb
t are lump-sum

net transfers by the big tech firm. Zt is a demand preference shock which follows the exogenous

process log(Zt) = ρzlog(Zt−1) + εz
t , with ρz ∈ [0, 1). The household receives the wages for all types
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of labor services in the form of bank deposits at the beginning of period t and uses them within the

period to buy final goods. The maximization problem is subject to standard solvency constraints

ruling out Ponzi schemes on bonds and equity

lim
T →∞

E0

{
Λ0,T

Bh
T

PT

}
≥ 0, lim

T →∞
E0

{
Λ0,T

ET Qe
T

PT

}
≥ 0, (3)

where Λ0,T ≡ βT C−σ
T

C−σ
t

ZT
Zt

.

Households’ optimality conditions concern the optimal intertemporal allocation of consumption

described by the Euler equations

1 = Et

{
Λt,t+1Π−1

t+1(1 + it)
}

, (4)

Qe
t = De

t + Et

{
Λt,t+1Π−1

t+1Qe
t+1

}
, (5)

together with the sequence of budget constraints (2) for t = 0, 1, 2, ..., and the transversality

conditions (3), where Λt,t+1 ≡ β
C−σ

t+1
C−σ

t

Zt+1
Zt

is the real stochastic discount factor, and Πt ≡ Pt
Pt−1

is the

(gross) inflation rate between t − 1 and t.

The wage setting problem and nominal wage rigidities are standard: each period workers

specialized in a given type of labor (or the union representing them) set wages subject to the Calvo

(1983)-type nominal rigidities. Specifically, workers specialised in any given labor type can reset

their nominal wage only with probability 1 − θw each period, independently of the time elapsed

since they last adjusted their wage. In this environment, wage dynamics are described up to a

first-order log-linear approximation by

πw
t = βEt{πw

t+1} − λwµ̂t
w (6)

where πw
t ≡ log(Wt) − log(Wt−1) is wage inflation rate, λw ≡ (1−θw)(1−βθw)

θw(1+ϵwφ) , with ϵw the elasticity

of substitution among labor types indexed by j, and µ̂t
w ≡ µw

t − µw denotes the deviations of the

economy’s (log) average wage markup µw
t ≡ (wt − pt) − (log(χ) + σct + φlt) from its steady-state

level µw.7

7For the derivation of the wage setting relation (6) see for instance Chapter 6 in Gaĺı (2015).
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4.2 The big tech firm

The role of the big tech firm is twofold – one is to run an e-commerce platform which facilitates

search and matching between sellers and buyers of intermediate goods; the other is to provide credit

to the sellers on its e-commerce platform. Its operating costs are normalized to zero.

The big tech firm makes profits and builds net worth N b
t by levying fees from both sellers and

buyers on its commerce platform. Specifically, intermediate goods producers that are not matched

with retailers at time t (a measure It) post advertisements on the platform at a unit real lump-sum

cost χm defined in terms of the bundle of final goods. Furthermore, those with a match (a measure

At) pay a fee τ∗ proportional to their sales pm
t

Pt
ym

t on the platform, where ym
t is the quantity of

intermediate goods sold by an individual firm and pm
t is the unit price of such goods. This implies a

total real income for the big tech firm in period t from taxes levied on intermediate goods firms

equal to χmIt + τ∗ pm
t

Pt
ym

t At. Furthermore, each retailer from a continuum of size one pays a unit

real fee equal to χr for each of its St searches for intermediate goods suppliers, with the fee defined

in terms of the bundle of final goods. This results in an additional real income for the big tech firm

in period t equal to χrSt. The big tech firm is owned by the household, and each period pays a

(net) nominal lump-sum transfer to the latter equal to Υb
t . The big tech invests its net worth at the

end of each period in nominal risk–free public bonds Bb
t ,

Bb
t = N b

t

and hence,

N b
t = N b

t−1
(
1 + it−1

)
+ χmPtIt + τ∗pm

t ym
t At + χrPtSt − Υb

t

Within each period, the big tech firm has the option to either keep funds idle, or to use them to

extend intra–temporal loans to firms selling products on its e-commerce platform. Since the bond

market opens only at the end of each period, a priori, the big tech is indifferent between keeping

funds idle within period (and getting a zero return) or using them to extend credit (and getting

the competitive intra-period loan interest rate which equals zero). For simplicity, we assume they

prefer the latter option.8 The lump-sum transfer Υb
t is such that the net worth of the big tech firm

8A marginally small market power in the credit market would make the equilibrium loan market rate strictly
positive. In this case, the big tech would strictly prefer to lend its funds instead of keeping them idle (conditional on a
strictly positive incentive-compatible demand for intra-temporal credit).
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is equal to the incentive-compatible credit that is willing to extend, namely

N b
t

Pt
=

∫ 1

0
L b

t (i)di

where L b
t (i) is the real value of incentive-compatible credit extended to the intermediate goods firm

i ∈ [0, 1], ensuring that the big tech firm is never financially–constrained. Unlike banks, the big tech

can exclude sellers from its e-commerce platform, and hence, shut down their sales options, in case

of default. Thus, as described later on, while banks need to ask for physical collateral, the big tech

can enforce credit repayment by threatening its users with the exclusion from the platform.9

In the model, the fee structure is taken as given and assumed to be determined by the big tech

firm so as to maximize the number of platform users (as in Rochet and Tirole (2003)). Accordingly,

the fees are invariable to business cycle fluctuations. The number of sellers and buyers in our model

are both normalized to unity.

4.3 Intermediate goods firms

The economy is populated with a continuum of perfectly competitive intermediate goods firms

indexed on the unit interval. Intermediate goods are produced with a Cobb Douglas production

technology

ym
t (i) = ξt(km

t (i))γ(lmt (i))1−α, i ∈ [0, 1], (7)

where ξt represents the level of technology assumed to be common to all firms and to evolve

exogenously over time according to the process

log(ξt) = ρξlog(ξt−1) + ϵξ
t ,

with ρξ ∈ [0, 1]. km
t (i) is the capital stock used in production by intermediate goods firm i, lmt (i)

is a CES index of labor input made of all labor types j hired by the intermediate goods firm i at
9Numerous documented cases from China show that when a vendor defaults on Alibaba credit, their digital stores

in Taobao (Alibaba) is permanently shut down and he has difficulties to switch to other big tech platforms because of
reputation effects (https://business.sohu.com/20130717/n381836247.shtml (in Chinese)).
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aggregate wage rate Wt.10 Following the literature on firm heterogeneity and capital misallocation

(e.g. Khan and Thomas (2013), Ottonello and Winberry (2020)), we assume that the production

function is characterized by decreasing returns to scale, that is γ + (1 − α) < 1, implying that

for a given amount of inputs, aggregate output is higher when production takes place in multiple

production units than in a single one.11 In the context of our analysis focused on small and medium

enterprises, which are those targeted by big techs’ credit provision services in practice, such a

technology speaks to congestion effects and diminishing marginal productivity observed as firms

scale up production within fixed production capacities (which are relatively inelastic in the short

run).

Intermediate goods firms sell their output to retailers. To do so, they need to match with the

latter via big tech’s e-commerce platform. Every period, some of the existing matches split with

exogenous probability δ, while new ones form with endogenous probability f(xt) (Figure 3). For

this reason, at each date t, the economy is populated with two types of intermediate goods firms:

those matched with retailers which use technology (7) to produce (a share At), and those without a

match at time t which do not produce and do not sell (a share It = 1 − At). The latter post instead

an advertisement on the big tech platform to signal their availability to supply goods in the next

period. For ease of exposition, hereafter, we’ll call the former “active”, and the latter “inactive”.

The timeline of intermediate goods firms’ operations is summarized in Table 3. Intermediate goods

firms found out in period t − 1 their active or inactive status in period t.
10The CES index of labor input lm

t (i) and the aggregate wage rate Wt take the standard CES expressions

lm
t (i) ≡

( ∫ 1

0
lm
t (i, j)1− 1

ϵw dj
) ϵw

ϵw−1

Wt ≡
( ∫ 1

0
Wt(j)1−ϵw dj

) 1
1−ϵw

where lm
t (i, j) denotes the quantity of type j labor employed by firm i in period t. The aggregate wage bill of any

given firm can thus be expressed as the product of the wage index Wt and the firm’s employment index lm
t (i):∫ 1

0
Wt(j)lm

t (i, j)dj = Wtl
m
t (i)

11This implies increasing marginal costs for firms. Similarly, in the labor market search and matching framework
worker’s marginal disutility of labour (the corespondent of the marginal cost in our setup) is increasing in labor.
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Firm j
active at t

Firm j
active at t + 1

Firm j
inactive at t

Firm j
inactive at t + 1

1 − δ

f(xt)δ

1 − f(xt)

Figure 3: Intermediate goods firms’ transition probabilities between the active and inactive states
Notes: δ is the probability that a firm active at time t becomes inactive at time t + 1, while f(xt) is the probability
that a firm inactive at t becomes active at t + 1

4.3.1 Inactive firms

Inactive firms are not matched with retailers at time t. They neither produce, nor sell goods. They

post instead advertisements on the big tech e-commerce platform at a fixed unit (real) cost χm to

attract potential clients (or to maintain the advertisement if they were also inactive at t − 1).

4.3.2 Active firms

Active firms at time t produce and sell their output to retailers. Since all At intermediate goods firms

active at date t produce the same quantity in equilibrium, we drop the index i while describing their

individual behaviour. The unit price pm
t and the quantity sold ym

t by each of them are determined

each period in a decentralized manner via period-by-period collective Nash bargaining between the

firms and retailers which are in a match at time t.12

Each intermediate goods firm producing at time t takes an intra-temporal loan Lt to hire labor

lmt at unit price Wt, and issues equity to buy capital km
t at unit price Qk

t .13 For convenience, we

assume that each firm issues a number of claims equal to the number of units of capital acquired

Et = km
t ,

12Note that the aggregate output by intermediate goods firms is not predetermined at time t: even though the
number of firms producing at time t (At) is decided at t − 1, the quantity produced by each of them is decided at t.

13Since firms’ capital is pledged as collateral for commercial bank loans, firms need to own their capital (rather
than rent it). Therefore, we assume they buy it with equity rather than with credit.
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and pays the marginal return on capital as dividend. Under this assumption, the price of each

equity claim Qe
t equals in equilibrium the price of capital Qk

t , namely, Qe
t = Qk

t .14

Two value functions on the intermediate goods firms’ side play an important role in the Nash

bargaining process: (i) the value for an intermediate goods firm of being “active” (V A
t ), namely of

being in a match, and (ii) the value for an intermediate goods firm of being “inactive” (V I
t ), namely

of being looking for a match. The former equals:15

V A
t ≡(1 − τ∗)pm

t

Pt
ξt(km

t )γ(lmt )1−α − Wt

Pt
lmt − Qk

t

Pt
km

t + Et

{
Λt,t+1

(Qk
t+1

Pt+1
km

t

)}
+

+ Et

{
Λt,t+1

[
(1 − δ)V A

t+1 + δV I
t+1

]}
(8)

where Et

{
Λt,t+1

[
(1 − δ)V A

t+1 + δV I
t+1

]}
is the expected value for an active firm at t + 1 when with

probability 1 − δ will maintain its match and gain V A
t+1, and with probability δ will lose the match

and gain V I
t+1 instead. This is also the expected value for an active firm of retaining access to the

e-commerce platform from t + 1 onward and will play a key role in our analysis. For future reference,

we thus further denote the expected value of profits on the platform by

Vt+1 ≡ Et

{
Λt,t+1

[
(1 − δ)V A

t+1 + δV I
t+1

]}
(9)

The value for an intermediate goods firm of being inactive at time t equals

V I
t ≡ −χm + Et

{
Λt,t+1

[
f(xt)V A

t+1 + (1 − f(xt))V I
t+1

]}
(10)

where −χm are the net period losses incurred as it posts the advertisement, while Et

{
Λt,t+1

[
f(xt)V A

t+1+(
1 − f(xt)

)
V I

t+1

]}
is the expected value at t + 1 for an inactive firm when with (endogenous) proba-

bility f(xt) will be matched with a retailer and gain V A
t+1, and with probability 1 − f(xt) will remain

inactive and gain V I
t+1 instead. The matching probability f(xt) is a function of the intermediate

goods market tightness xt defined as the relative number of open searchers relative to the number
14A similar simplifying assumption is used in the literature by Gertler and Karadi (2011).
15In our model, capital is chosen contemporaneously such that the value for a firm of being inactive in the network

at time t is identical to the outside option for an active firm if it were to split from its match during bargaining.

17



of inactive intermediate goods firms

xt ≡ St/It (11)

The intermediate goods market is tight (the value of xt is high) when there are very few inactive

intermediate goods firms It relative to the number open searches St.

The surplus of an active intermediate goods firm from an existing match is thus given by

Sm
t ≡ V A

t − V I
t

After replacing the expressions of V A
t from (8) and of V I

t from (10), and using intermediate goods

firms’ production technology (7) to compute lmt =
[

ym
t

(km
t )γ

] 1
1−α , one may write the surplus Sm

t as a

function of ym
t , pm

t and km
t as follows:

Sm
t (pm

t , ym
t , km

t ) =(1 − τ∗)pm
t

Pt
ym

t − Wt

Pt
lmt (ym

t , km
t ) − Qk

t

Pt
km

t + Et

{
Λt,t+1

[Qk
t+1

Pt+1
km

t

]}
+

+ χm + (1 − δ − f(xt))Et{Λt,t+1[Sm
t+1(pm

t+1, ym
t+1, km

t+1)]} (12)

The production of intermediate goods is subject to credit frictions. Following Jermann and

Quadrini (2012) which highlights the relevance of firms’ short-term financing constraints for macroe-

conomic fluctuations, we asume that a firm producing at time t needs to finance the wage bill

in advance of sales. The firm starts with no net worth and distributes profits each period to the

household. It thus needs to finance the wage bill with an intra-temporal loan. There are two sources

of credit available: secured bank credit and big tech credit. Both types of credit are limited.

Bank credit L s
t is limited by the expected resale value of firms’ collateral. The latter is given

by a share νt of physical capital value, implying:

L s
t ≤ νtEt

{
Λt,t+1

[Qk
t+1

Pt+1
km

t

]}
(13)

We assume νt follows a persistent process log(νt) = ρν log(νt−1) + ϵν
t , with ρν ∈ [0, 1]. Variations in

νt act as exogenous shocks to the availability of bank credit, possibly capturing bank balance sheet

considerations that we do not model here.

The amount of credit that the big tech firm is willing to extend to intermediate goods firms is
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also limited by moral hazard. The limit equals the expected gains for intermediate goods firms from

retaining access to the big tech network in the future (Ṽt+1):

L b
t ≤ bṼt+1 (14)

This is because intermediate goods firms which default on big tech credit are automatically excluded

from the e-commerce platform in the following period. If credit exceeded the expected gain of

remaining on the platform, firms would be better off defaulting and running away with the funds.

Anticipating this, the big tech creditor does not extend credit above what firm borrowers would get

if they absconded such that the latter always have an incentive to repay.16

We assume that only a share strictly lower than one of future profits, b ∈ [0, 1), can be pledged

as network collateral. This accounts for alternative retail options that intermediate goods firms can

use to sell products other than the big tech e-commerce platform, as well as switching costs between

those alternative options and the e-commerce platform. In particular, if firms had the alternative

to sell products outside the e-commerce platform, and chose to default, they would then lose the

difference between the expected profits on the big tech e-commerce platform and those earned with

the alternative retail option, net of switching costs to those alternative options. To the extent that

this difference is (roughly) proportional to a share of expected profits on the e-commerce platform,

setting b < 1 accounts for this dimension.

We further assume that firms are excluded from the platform for a finite number of periods.

The rationale of this assumption has to do with big tech’s incentives: the big tech may not want

to exclude intermediate goods firms forever from the e-commerce platform because it would lose a

substantial amount of fees. Denoting by κ the number of exclusion periods, we obtain

Ṽt+1 = Vt+1 − Et

{
Λt,t+κ

[
Vt+κ+1

]}
(15)

where Vt+κ+1 ≡ Et

{
Λt+κ,t+κ+1

[
(1 − δ)V A

t+κ+1 + δV I
t+κ+1

]}
is the expected value at time t + κ of

16Note that the exclusion threat from big tech’s ecosystem is similar in nature to the oldest credit enforcement
technology which worked via threats to the body integrity of creditors (with “capital punishment” at the extreme).
Though classified as illegal, this method still applies to modern times (e.g. Hubbard (1967), Kercher (1978), Ryan
(1993), Bond (1998), Mishra (2008), Yimer (2025)). The similarity goes as follows: according to both methods, in case
of default, the creditor does not get any valuable collateral that could be liquidated and used to (partially) cover
for the unpaid debt; the severe nature of the threat and its credibility are enough to make sure that default is not
observed in equilibrium (or its risk is curtailed drastically). This is different from credit secured against physical
collateral (or against future earnings), where the latter can be easily liquidated/ceased by creditors in case of default.
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regaining access to the platform from t + κ + 1 onward, and Λt,t+κ ≡ βκ C−σ
t+κ

C−σ
t

is the stochastic real

discount factor at time t of consumption units at time t + κ. For instance, if intermediate goods

firms lost access to the commerce platform for one period (i.e. κ = 1) in case of default, the credit

limit would equal Ṽt+1 ≡ Vt+1 − Et
{
Λt,t+1Vt+2

}
.

Given the two credit constraints, the total amount of credit that intermediate goods firms can

get is limited by both collateral and incentives to remain in the big tech network, namely

L b
t + L s

t ≤ bṼt+1 + νtEt

{
Λt,t+1

[Qk
t+1

Pt+1
km

t

]}
Since credit is used to finance labor, intermediate goods firms’ borrowing constraint implies

Wt

Pt
lmt ≤ bṼt+1 + νtEt

{
Λt,t+1

[Qk
t+1

Pt+1
km

t

]}
(16)

Note that a binding constraint on intermediate goods firms’ credit ultimately limits the aggregate

supply of goods in the economy.

4.4 Retailers

There is a continuum of size one of such firms. They are all identical and perfectly competitive. A

typical retailer buys intermediate goods from all At intermediate goods firms active at time t via

the big tech commerce platform, and produces final goods Yt with the following linear technology:

Yt =
∫ At

0
ym

t (i)di

where ym
t (i) is the quantity purchased from the active intermediate goods firm i ∈ [0, At] decided by

Nash–bargaining. Retailers purchase the same quantity from each active intermediate goods firm i

ym
t (i) = ym

t ∀i ∈ [0, At],

implying that the output of a typical retailer (and of the final goods sector as a whole) equals

Yt = Aty
m
t

Each period a typical retailer actively searches on the big tech commerce platform for St

intermediate goods suppliers for use in the following period (see the timeline in Table 3). The value
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of a search Is
t (the subscript s denoting ”search”) equals

Is
t ≡ −χr + g(xt)Et{Λt,t+1IB

t+1} (17)

where g(xt)Et{Λt,t+1IB
t+1} is the expected gain of finding an intermediate goods supplier. Here,

g(xt) denotes the probability to find a supplier (to be defined shortly), and IB
t+1 the state–contingent

value at t + 1 of being matched with a supplier (where B stands for ”business” relation).

As long as the value of a search Is
t is strictly positive, retailers will add new searches. As

the number of searches increases, the probability g(xt) that any open search gets matched with a

suitable intermediate goods supplier decreases. A lower probability of filling an open search reduces

the attractiveness of looking for an additional supplier, and decreases the value of an open search.

Thus, at each date t, retailers will look for new suppliers until the marginal value of an open search

is zero. Thus, the equation describing the number of searches St is obtained for Is
t = 0, namely for

χr = g(xt)Et{Λt,t+1IB
t+1} (18)

The value of an existing relation with an intermediate goods supplier at time t equals

IB
t = ym

t − pm
t

Pt
ym

t + (1 − δ)Et

{
Λt,t+1IB

t+1

}
(19)

where ym
t − pm

t
Pt

ym
t are current real profits for the retailer from the relation with a supplier, and

(1 − δ)Et{Λt,t+1IB
t+1} is the expected value of the match at t + 1 when with probability 1 − δ it will

be maintained. Since (18) holds in equilibrium, the expression of IB
t in (19) further writes as

IB
t = ym

t − pm
t

Pt
ym

t + χr(1 − δ)
g(xt)

(20)

One may write expression (20) for t+1, and combine it with equation (18) to obtain the intermediate

goods supplier–search equation

χr

g(xt)
= Et

{
Λt,t+1

[
ym

t+1 −
pm

t+1
Pt+1

ym
t+1 + χr(1 − δ)

g(xt+1)
]}

(21)

The surplus of a typical retailer from an existing match is thus given by

Sr
t ≡ IB

t − Is
t
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which, using the expression of IB
t in (20) and Is

t = 0, can be written in equilibrium as a function of

pm
t and ym

t as follows

Sr
t (pm

t , ym
t ) ≡ ym

t − pm
t

Pt
ym

t + χr(1 − δ)
g(xt)

(22)

4.5 Matching

Retailers search each period for inactive intermediate goods firms on the e-commerce platform. That

is, retailers cannot buy their inputs instantaneously. Rather, intermediate goods suppliers need to

be found first through a costly and time–consuming search process. If a match is formed at time t,

intermediate goods firms start producing and selling inputs to retailers at time t + 1. The matching

function

M(St, It) = σmSη
t I1−η

t , η ∈ (0, 1) (23)

gives the number of inactive intermediate goods firms which post advertisements (and do not

produce) closing a deal with the retail sector at time t. σm is the scale parameter reflecting the

efficiency of the matching process. The parameter captures the ability of the big tech to collect

data and process information about firms’ characteristics. The higher the volume of available data,

the more efficiently the big tech firm can match sellers with buyers on the e-commerce platform.

The matching function is increasing in its arguments and satisfies constant returns to scale.

Existing matches on the intermediate goods market might also be severed for exogenous reasons

at the beginning of any given period, so that the stock of active matches is subject to continual

depletion. We denote with δ the exogenous fraction of the active intermediate goods firms which

split with their client and need to post an advertisement. Hence, the number of intermediate goods

firms active at time t + 1 (determined at t) evolves according to the following dynamic equation

At+1 = (1 − δ)At + M(St, It),

which simply says that the number of matched (active) intermediate goods firms at the beginning of

period t + 1, At+1, is given by the fraction of matches in t that survives to the next period, (1 − δ)At,

plus the newly-formed matches at time t, M(St, It).
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Table 3 Timeline of operations – intermediate goods firms and retailers

Period t − 1 Intermediate goods firm finds out if it is active or inactive at t

Period t Intermediate goods firm i ∈ [0, 1]:

If active, produces and sells intermediate goods to retailers; to
do so:

(i) at the beginning of the period, issues equity Et to buy
capital km

t , gets (real) working capital loan Lt to hire labor lmt ,
and produces ym

t ;

(ii) at the end of the period, repays the working capital loan,
transfers the return on capital as dividend to equity investors
and any remaining profits to the household, pays a fee τ∗ to the
big tech proportional to its sales on the commerce platform.

If inactive, pays a fee χm to post an ad on the big tech
platform, and transfers net period profit to the household.

A typical retailer:

(i) buys inputs from all At active intermediate goods suppliers;

(ii) searches for St intermediate goods suppliers for use at t + 1,
paying a unit fee equal to χr for each search.

Matching:

Active intermediate goods firms and retailers bargain over the
price pm

t and the quantity ym
t of intermediate goods.

Period t + 1 If active at t, intermediate goods firm i sells capital km
t and

pays the household back the market value of its equity
investment Qe

tEt−1.

We can now compute the endogenous probabilities for an inactive intermediate goods firm to

find a match f(xt), and for an open search to be filled by an intermediate goods firm g(xt).

The probability that an open search is filled with an inactive intermediate goods firm, g(xt),
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decreases in xt, and equals

g(xt) ≡ M(St, It)
St

= σm

(St

It

)η−1
= σmxη−1

t (24)

Similarly, the probability that any inactive intermediate goods firm is matched with an open search

at time t, f(xt), increases in xt, and is given by

f(xt) ≡ M(St, It)
It

= σm

(St

It

)η
= σmxη

t (25)

Thus, inactive intermediate goods firms will find final goods clients more easily when the intermediate

goods market is tighter, that is, when inactive intermediate goods producers are scarce relative to

the open searches by retailers.

4.6 Banks

Banks finance intra-period secured loans by issuing intra-period deposits. These deposits are received

by households at the beginning of the period and used to buy final goods by the end of the period.

4.7 Central bank

The central bank sets the nominal risk–free policy rate it in line with the simple Taylor-type rule

1 + it = 1
β

Πϕπ
t

(Yt

Y

)ϕy

emt (26)

where Y is steady-state output, and mt is a monetary policy shock following an AR(1) process:

mt = ρmmt−1 + ϵm
t

where ρm ∈ [0, 1) and ϵm
t is a monetary policy surprise.

4.8 Government

The government issues the one period public nominal risk–free bonds held by households Bh
t and by

the big tech firm Bb
t , and balances the budget with lump–sum (net) transfers Υg

t :

Bh
t + Bb

t =
(
Bh

t−1 + Bb
t−1

)(
1 + it−1

)
+ Υg

t (27)
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4.9 Market clearing

4.9.1 Final goods market

Market clearing requires aggregate demand for final goods by households to equal their aggregate

supply by retailers:

Ct = Yt (28)

4.9.2 Intermediate goods market

Market clearing requires aggregate demand for intermediate goods by retailers to equal aggregate

supply by all active intermediate goods firms at time t:

Yt = Aty
m
t (29)

The quantity produced by each intermediate goods firm ym
t and the price of an intermediate good

pm
t are determined by period–by–period Nash–bargaining. The bargaining process is described in

detail in the next section.

4.9.3 Capital market

Capital (“real estate”) is in fixed aggregate supply K̄ and does not depreciate. Market clearing

requires aggregate demand for capital by all active intermediate goods firms to equal its aggregate

supply:

Atk
m
t = K̄ (30)

4.9.4 Labor market

Market clearing requires aggregate demand for all labor types by all active intermediate goods firms

to equal its supply by households:

∫ At

0

∫ 1

0
lmt (i, j)djdi = Lt

∆w,tAtl
m
t = Lt (31)

where ∆w,t ≡
∫ 1

0

(
Wt(j)

Wt

)−ϵw

is equal to 1 up to a first order log-linear approximation.
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4.9.5 Bond market

Market clearing requires that demand for public bonds by the household and by the big tech firm

to equal their supply by the government:

Bh
t + Bb

t = Bt (32)

4.9.6 Equity market

Market clearing requires that the demand for equity claims by households to equal their supply by

active intermediate goods firms wiling to finance physical capital:

Et = Atk
m
t (33)

4.10 Bargaining

In equilibrium, the retailers and the intermediate goods firms which are in a match obtain a total

return that is strictly higher than the expected return of unmatched retailers and intermediate

goods firms. The reason is that if the two firms separate, each will have to go through an expensive

and time-consuming process of search before meeting another partner. Hence, a realized match

needs to share this pure economic rent equal to the sum of expected search costs for the two parties.

We assume that this rent is shared through period–by–period collective Nash bargaining between

each retailer and its suppliers. That is, the outcome of the bargaining process maximizes the weighted

product of the parties’ surpluses from the match according to the parties’ relative bargaining power.

Bargaining takes place along two dimensions, the price pm
t of an intermediate good and the output

ym
t of an intermediate goods firm, and it is subject to the technology and credit constraints of

intermediate goods firms described by equations (7) and (16), respectively. Since all retailers are

identical, active intermediate good firms will sell the same quantity ym
t at the same price pm

t to all

its customer retailers. The optimal choices of pm
t and ym

t implicitly require an appropriate choice

of the capital stock km
t . The set {pm

t , ym
t , km

t } is given by the solution to the following bargaining

problem:

{pm
t , ym

t , km
t } = argmax

[
Sm

t (pm
t , ym

t , km
t )

]ϵ[
Sr

t (pm
t , ym

t )
]1−ϵ

, 0 < ϵ < 1
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subject to

Wt

Pt
lmt (ym

t , km
t ) ≤ bṼt+1 + νtEt

{
Λt,t+1

[Qk
t+1

Pt+1
km

t

]}
(34)

where ϵ is the (relative) bargaining power of the active intermediate goods firms.17

The price pm
t chosen by the match satisfies the optimality condition

ϵ (1 − τ∗)Sr
t = (1 − ϵ)Sm

t (35)

where both surpluses Sm
t and Sr

t are a function of pm
t , ym

t and km
t .

The optimality condition with respect to ym
t writes

ym
t : ϵSr

t

(
Wt

Pt

∂lmt (ym
t , km

t )
∂ym

t

− (1 − τ∗)pm
t

Pt

)
= (1 − ϵ)Sm

t

(
1 − pm

t

Pt
− λt

1 − ϵ

Wt

Pt

∂lmt (ym
t , km

t )
∂ym

t

( Sr
t

Sm
t

)ϵ
)

where λt ≥ 0 is the Lagrangian multiplier on a intermediate goods firm’s credit constraint. Using

(35), this optimality condition can be simplified under our baseline calibration with ϵ = 1 − ϵ as:18

1 = 1
1 − α

Wt

Pt

lmt
ym

t

[ 1
1 − τ∗ + λt

1 − ϵ

( 1
1 − τ∗

)ϵ]
, λt ≥ 0 (36)

In the absence of credit frictions and of the variable big tech fee (i.e. when λt = 0 and τ∗ = 0),

this condition implies that the real return for a retailer on an intermediate good equates its marginal

production cost. In this special case, the outcome is (privately) efficient and the price of intermediate

goods plays only a distributive role: the Nash bargaining model is equivalent to one where ym
t is

chosen to maximize the joint surplus of the match, while pm
t is set to split that surplus according to

the parameter ϵ. In the absence of credit frictions, the variable fee τ∗ levied by the big tech distorts

firms’ production decisions similar to a proportional sales tax. The higher the variable fee, the larger

the wedge between the marginal production cost of an intermediate good and its marginal return,

and the lower the level of intermediate goods. Thus, while the big tech improves the aggregate

allocation by allowing firms to match in a more efficient way, it also impairs it by financing credit

with fees that distort the production choices of firms active on the platform. Furthermore, credit
17lm

t is substituted in the bargaining problem using the technology constraint, so the constraint entering the
bargaining problem is a combination of the borrowing and technology constraints.

18The relative bargaining power of sellers and buyers may play an important role for the equilibrium allocation. In
this analysis however we remain agnostic about such effects and give both equal bargaining power ϵ = 1 − ϵ = 0.5.
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frictions taken individually distort firms’ production decisions introducing a wedge between the

marginal revenue and the marginal production cost of intermediate goods. The tighter the credit

constraint, the higher this wedge. In the general case (36) with both credit constraints and variable

fees (i.e. when λt > 0 and τ∗ > 0), the magnitude of the wedge depends on both types of frictions.

The optimality condition with respect to capital for ϵ = 1 − ϵ writes

Qk
t

Pt
= γ

ym
t

km
t

[ 1 + λt
ϵ

(
1 − τ∗

)1−ϵ

1
1−τ∗ + λt

1−ϵ

(
1

1−τ∗

)ϵ

]
+

[
1 + νtλt

ϵ

(
1 − τ∗

)1−ϵ]
Et

{
Λt,t+1

[Qk
t+1

Pt+1

]}
(37)

In the absence of credit frictions and of the variable fee, the optimality condition above defines

a standard capital demand equation where the price of capital equals its marginal return plus the

discounted value of its future expected market value.19 In the general case with a binding credit

constraint (λt > 0), firms take into account the contribution of capital as collateral.

Equations (34), (35), (36) and (37) describe the outcome of the bargaining process which

determines λt, pm
t , ym

t , and km
t . When search frictions in the goods markets and credit frictions in

the financial markets are zero, the model collapses to the basic New Keynesian model with sticky

wages.

5 Parametrization

We parameterize our model at quarterly frequency using data for the US economy.20

The calibration aims at reflecting the empirical evidence provided in Section 3.2 for the US on

the response of asset prices (the “collateral channel”) and firm profits (the “network channel”) to a

monetary policy shock. It is convenient to split the structural parameters of the model (as reported

in Table 4) in four groups.

The first group includes the standard parameters of the basic NK model. The discount factor

β, the curvature of labor disutility φ, the labor share 1 − α, the elasticity of substitution between
19Setting λt = 0 and τ∗ = 0 in (37), we get:

Qk
t

Pt
= γ

ym
t

km
t

+ Et

{
Λt,t+1

[
Qk

t+1

Pt+1

]}
The same optimality condition is satisfied in the case with a variable big tech fee, but no credit frictions.

20Since the US economy has a negligible share of big tech credit, we calibrate a version of the model without big tech
credit, and then look how results change when big tech credit becomes available and its share in total credit increases.
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Table 4: Parametrization

Parameter Description Value
β Discount factor 0.99
σ Curvature of consumption utility 2
φ Curvature of labor disutility 2
χ Labor disutility 0.75

1 − α Elasticity of output to labor 0.75
εw Elasticity of substitution of labor types 4.5
θw Calvo index of wage rigidities 0.75
ϕπ Taylor coefficient inflation 1.5
ϕy Taylor coefficient output 0.5/4
ϕi Interest rate smoothing parameter 0.8

ρm Persistence monetary policy shock 0.5
ρz Persistence demand preference shock 0.5
ρa Persistence technology shock 0.9
ϵ Relative bargaining power of the seller 0.5
η Matching function parameter 0.5
δ Probability to separate from an existing match 5%

K̄ Fixed supply of capital (real estate) 1
γ Elasticity of output to real estate 0.03
ν Sensitivity working capital to physical collateral 10%

χm Fixed big tech fee for intermediate goods firms 0.05
χr Fixed big tech fee for retailers 0.05
τ∗ Variable big tech fee on intermediate goods sales 8%
b Share of profits pledgeable as network collateral 40%
κ Exclusion periods from the commerce platform 12

σm Matching efficiency [0, 1]
Note: Values are shown in quarterly rates.

labor types εw, the Calvo index of wage rigidities θw and the persistence of shocks are all set to

standard textbook values (see Gaĺı (2015)). The labor disutility parameter χ is set to obtain an

efficient level of labor equal to one in steady state, while the monetary policy coefficients ϕπ and ϕy

describe the Taylor (1993) rule. The interest rate smoothing parameter is set to 0.8 in line with

empirical estimates for the period starting with Paul Volcker’s chairmanship in Clarida, Gali, and

Gertler (2000). The curvature of consumption utility σ is set larger than one such that property

prices respond more than e–commerce sales to monetary policy in line with our empirical findings.

The higher σ > 1, the larger the reaction of capital price above that of sales.21 We choose σ = 2 as
21This is true with/without big tech credit. Since the average share of big tech credit in the US during the estimation

period is negligible, the empirical estimates roughly speak to the case with bank credit only (i.e. b = 0).
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in Woodford (2003).22

The second group of parameters captures the search and matching frictions. We choose to

remain agnostic about the effects of the relative bargaining power ϵ and the relative contribution

to matching η by setting both parameters to 0.5.23 The probability to separate from a match δ is

set to 5% which implies an average supplier relation duration of five years, consistent with median

values within supply chains reported by Cen, Dasgupta, and Sen (2016) based on US Compustat

firm level data.24

The third group of parameters concerns physical capital. The fixed aggregate supply of capital is

normalized to 1 and its index of decreasing returns γ equals 0.03 as in Iacoviello (2005). Conditional

on σ > 1, the steady-state value of the capital pledgeability ratio ν is a key determinant for how

much more the price of capital responds to monetary policy than e-commerce sales when the credit

constraint (34) binds: a lower ν is associated to a larger response of the capital price relatively to

that of sales. We set this parameter to 10%, which is a value in the plausible parameter space for

the pledgeability of physical assets. Kermani and Ma (2023) reports an average pledgeability share

of physical assets which can be used a priori for both physical and working capital of around 30%.

The forth and final group of parameters concern the big tech platform. Ideally, one would like

to use micro-level evidence to set the values of these parameters. However, aside from variable big

tech fees, such evidence is not yet available. We thus set the variable big tech fee τ∗ roughly equal

to average values in the data (Table 1), choose plausible values for the other variables, and then

check the robustness of our findings around these plausible values. In particular, we set the share of

vendors’ profits pledgeable as network collateral b to 40%, the number of exclusion periods from

the platform in case of default on big tech credit κ to 12 (that is, three years) and the fixed big

tech fees, χm and χr, to 0.05. Finally, the matching efficiency on the e-commerce platform σm is

set initially to a low value (0.01) and is then varied to see how its increase affects the long run

allocation and the transmission of business cycle shocks.
22Setting σ > 1 is also necessary for credit frictions to amplify the response of output to monetary policy (alongside

wage stickiness), and hence for the model to feature a financial accelerator.
23These values are standard in the search and matching labor market literature and also simplify the solution of the

highly non-linear steady state of the model.
24Cen, Dasgupta, and Sen (2016) report a median (mean) supplier relationship duration of 4.9 (5.6) years.
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6 Big tech credit and the long-run allocation

This section studies how the availability of big tech credit affects the long run (steady-state)

allocation, and how these effects vary with the matching efficiency between sellers and buyers on

the big tech e-commerce platform. With this exercise, our goal is twofold. First, we aim to shed

light on how the entry of big techs into finance may shape the long-run macroeconomic allocation.

Second, we study how these effects may change as big tech companies acquire more data on their

clients and are able to match more efficiently sellers with buyers on their e-commerce platforms.

To do so, we solve the steady-state of the model as a function of the matching efficiency σm. For

simplicity, we assume a steady-state with zero inflation and zero growth. Main findings are reported

in Figure 4. To disentangle the effect of big tech credit, we study the difference between steady

state outcomes with both types of credit (blue line) and those with bank credit only (red line).

Given a matching efficiency level σm, the availability of big tech credit expands total credit and

relaxes credit constraints (middle right panel) relative to an economy with bank credit only. The

expansion in credit supply boosts aggregate output approaching it to its efficient level (top left

panel). These effects work via the binding borrowing constraint described by (34). Specifically, the

availability of big tech credit allows intermediate goods firms to additionally pledge a share of their

future expected profits Ṽt+1 as network collateral (top right panel) alongside physical capital. All

else equal, the higher collateral allows intermediate goods firms to increase their borrowing and to

hire more labor. This relaxes firms’ credit constraints and leads to a higher aggregate output.

Notably, the higher output resulted from the credit expansion further translates into a higher

value for intermediate goods firms to be active in the network (bottom right panel). Thus, at a

given matching efficiency, expected profits and network collateral (blue line) are even higher than in

the absence of big tech credit (red line). As a result, a feedback loop emerges between the volume

of big tech credit and intermediate goods firms’ output which works to amplify the initial effect of

this new type of credit on the macroeconomy (Figure 5).
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Figure 4: Steady-state equilibrium and matching efficiency on the e-commerce platform
Notes: Long-run output inefficiency: percentage deviation of output Y from its efficient level. Network collateral:
expected profits that vendors on the platform would lose in case of default b(1−βk)V . Credit tightness: λ. Probability
for a vendor to find a client: f(x). Vendors’ value of being active: V a.
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Figure 5: Feedback loop between network value, credit constraints and output

The higher the matching efficiency σm, the stronger is the effect of big tech credit on the

steady-state allocation. This is reflected in Figure 4 by the larger differences between the blue

and red lines for higher values of σm. A higher matching efficiency increases the probability for

an intermediate goods firm to find a client f(x) both directly by making a match more likely and

indirectly by raising the intermediate goods market tightness x (equations (11) and (25)).25 The

higher probability to find a client (bottom left panel) boosts the expected profits of intermediate

goods firms in inactive and active contingencies (equations (8) and (10)) and translates in higher

network collateral Ṽ (equation (15))26. Everything else equal, the higher network collateral allows

intermediate goods firms to borrow more and hire more labor. This relaxes by more the borrowing

constraints relative to the case with bank credit only and boosts by more total credit and output.

According to our findings, when big tech credit is available, as the matching efficiency on the

e-commerce platform rises, not only matching, but also credit frictions are progressively corrected.

So, provided firms can pledge a high enough share of their expected profits on the platform, the

increase in matching efficiency can reduce the tightness of credit constraints up to the point where

the economy enters its credit–frictionless region (note that λ → 0 as σm increases in the middle

right panel).27

Since the rise in total credit is driven by the expansion in big tech credit, the share of big tech

credit in total credit steadily increases as matching efficiency improves (middle left panel). Notably,

the rise in the share of big tech credit used by firms on the platform is further reinforced by a

slight decline in the supply of bank credit. The shrinkage in bank credit is due to the loosening

of credit constraints (middle right panel) which makes physical capital less valuable as collateral,

and consequently, reduces its price (see equation (37)). As a result, as matching efficiency on the
25The rise in intermediate goods market tightness is due to the decline in the number of inactive intermediate goods

firms in the steady-state I, as more of these firms become active on the platform.
26The value of network collateral in steady-state equals Ṽ = b(1 − βk)V .
27The same applies to the number of exclusion periods from the platform in case of default κ.
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e-commerce platform improves, the rise in big tech credit slightly crowds out bank credit, and the

two types of credit become (net) strategic substitutes in equilibrium.

Notably, the efficiency gains associated to the use of the big tech platform are limited by the

distortionary nature of their fees. Figure 6 shows that in the absence of credit frictions, variable

fees distort the allocation via the firm level output (a pure sales tax effect), without affecting

the matching process (i.e. the equilibrium level of active sellers). The higher the fees levied in

proportion to sales on the big tech platform τ∗, the larger the “sales-tax” distorsions (see equation

(36)), and the lower the net efficiency gains associated to the expansion of transaction on the big

tech e-commerce platform.
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Figure 6: Distorsionary big tech fees and the steady-state allocation
Notes: Output (aggregate): Y . Share of active sellers on the commerce platform: A. Matching efficiency: σm

7 Big tech credit and business cycle fluctuations

How does big tech credit affect the propagation of business cycle shocks in the economy? Similarly

to the long-run effects studied in the previous section, the answer to this question depends on the

matching efficiency on the e-commerce platform.

The borrowing constraint on big tech credit described by equation (14) shows that the financial

accelerator characterising this new type of credit is different from that characterising bank credit.

Specifically, when credit constraints bind, big tech credit amplifies business cycle fluctuations via a

feedback loop between output and future profits on the e-commerce platform (network collateral).
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This feedback loop is different from the conventional one characterising bank credit which works via

property prices (physical collateral) as opposed to future profits (see quation (13)).

The quantitative impact of big tech credit on the responses of total credit and output to business

cycle shocks thus ultimately depends on two factors: the gap between the responses of network

collateral and physical collateral – that is, the strength of the financial accelerator associated to big

tech credit compared to that associated to bank credit – and the share of this new type of credit.

Notably, our analysis shows that these two factors are affected by the matching efficiency between

sellers and buyers on the e-commerce platform. Consequently, the overall impact of big tech credit

on macroeconomic fluctuations varies with this structural parameter.

Baseline model with both types of credit Bank credit only

Matching efficiency/Variables Big tech credit Bank credit Total credit Output Credit Output

Low -0.54 -1.81 -1.61 -1.00 -1.94 -1.11

Intermediate -1.43 -1.79 -1.65 -1.01 -1.95 -1.11

High -0.71 -0.71 -0.71 -0.71 -1.95 -1.11

Table 5: Matching efficiency and the effect of monetary policy shocks on credit and output
Notes: Effect on impact to a positive 25 basis points monetary policy surprise. Low/intermediate/high matching
efficiency levels: σm ∈ {0.01, 0.04, 0.07} with associated shares of big-tech credit equal to 15%, 40% and 60%.

Under our baseline calibration, when matching efficiency on the e-commerce platform is low, the

introduction of big tech credit mitigates the sensitivity of credit and output to business cycle shocks.

Such a situation may characterise the relatively early development stages of big tech platforms.

Table 5 summarises the results in the particular case of a monetary policy shock. Similar findings

apply more generally to technology (Table B1) and demand preference shocks.28 Columns two

to five in Table 5 show the responses on impact of big tech credit, bank credit, total credit and

output to a 25 basis points contractionary monetary policy shock for different levels of the matching

efficiency σm in the baseline economy where firms have access to both types of credit. For ease of

comparison, to disentangle the effect of big tech credit, columns six and seven further show the

corresponding responses of credit and output in a counterfactual economy with bank credit only.
28Dynamic responses of output and credit to a demand preference shock ϵz

t of −0.5 percentage points are identical
to those to a 25 basis points monetary policy shock. In fact, given the normalization of the shock, the response of
all variables excluding the nominal and real interest rate is identical to that describing the effects of a monetary
tightening. Formally, the reason for this is that (1 − ρz)log(Zt) and mt enter symmetrically (though with opposite
sign) in the log-transformed version of the Euler equation (4).
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According to Table 5, when matching efficiency is relatively low (row one), in the baseline

economy with both types of credit, big tech credit (column two) responds significantly less on impact

than bank credit to the monetary shock (column three). For example, when σm = 0.01, big tech

credit drops by 0.54 percent, while bank credit drops by 1.81 percent. As a result, provided the

share of big tech credit is high enough, in this low matching efficiency region, the supply of credit

by big techs works to dampen the response of total credit to monetary policy. In particular, at that

level of matching efficiency, total credit drops by 1.61 percent in the baseline economy with both

types of credit (column four) instead of 1.94 percent in the counterfactual economy with bank credit

only (column six). With total credit reacting less, the response of output in the baseline economy

(column five) is also mitigated relatively to the case with bank credit only (column seven) – for

instance, in our previous example, it drops by one percent instead of 1.11 percent.

Figure 7 compares the dynamic responses to a 25 basis points unexpected monetary policy

tightening in the baseline economy (blue line) to those in an economy with bank credit only (red

line) at a low level of matching efficiency.29 The figure shows that in the baseline economy, big tech

credit (middle left panel, blue line) responds less than bank credit (middle right panel, blue line)

because pledgeable profits on the platform (bottom left panel, blue line) react less than property

prices (bottom right panel, blue line). As a result, total credit (right top panel) and output (left

top panel) react less in the baseline economy (blue lines) than in the case with bank credit only

(red lines) implying that big tech credit mitigates the response of the macroeconomy to the shock.

Notably, the dynamic responses in Figure 7 show that big tech credit dampens the effect of the

shock on output (top left panel) not only because it reacts less than bank credit (middle panels),

but also because it mitigates the reaction of bank credit. Specifically, bank credit (right middle

panel) responds less in the baseline economy (blue line) than in the case with bank credit only (red

line). This is because big tech’s additional supply of credit in the baseline economy loosens credit

constraints relative to the case with bank credit only, thereby weakening the financial accelerator.

Similar findings are reported in Table B1 in the Appendix for a technology shock.

As the matching efficiency on the e-commerce platform rises (Table 5, rows one versus two), big

tech credit (column two) starts reacting more to the shock in the baseline economy (but still less

than bank credit (column three)). This is explained by a higher sensitivity of network collateral to
29The share of big tech credit is an increasing function of the matching efficiency (Figure 4, left middle panel).

36



1 2 3 4
-1.2

-1

-0.8

-0.6

-0.4

Both types of credit
Bank credit only

1 2 3 4

-1.8

-1.6

-1.4

-1.2

-1

-0.8

1 2 3 4

-0.5

-0.4

-0.3

-0.2

1 2 3 4

-1.8

-1.6

-1.4

-1.2

-1

1 2 3 4

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 2 3 4

-1.8

-1.6

-1.4

-1.2

-1

-0.8

Figure 7: Dynamic responses to a monetary policy shock
Notes: The monetary policy shock is due to a monetary surprise ϵm

t of 25 basis points. Low matching efficiency
σm = 0.01. Share of big tech credit: 15%. Y-axis: percentage deviation from steady-state.

the shock as matching frictions subside. With less matching frictions, the average probability for a

firm to become active once inactive, f(x), is higher. As a result, network collateral Vt (equation (9))
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becomes more closely linked to the value of being active, V a
t (equation (8)), and hence to period

profits and capital return earned on the platform. The latter are sensitive to the business cycle,

unlike net losses during inactivity, which consists of fixed fees and are therefore relatively insensitive

to shocks (equation (10)). At the same time, bank credit starts reacting by less. This is because

the higher matching efficiency and the associated expansion in big tech credit, lead to a loosening

of firms’ credit constraints and thereby to a weaker financial accelerator. Overall however, the

enhanced reaction of big tech credit more than compensates the dampening in the reaction of bank

credit. As a result, total credit (column four) and output (column five) start reacting more to the

monetary policy shock in the baseline economy (rows one versus two), and the gaps between the

reactions in the baseline economy and those in the case with bank credit only (slightly) narrow.

Eventually, once matching efficiency becomes sufficiently high to push the economy beyond its

credit frictionless limit, the financial accelerator vanishes and the reactions of credit and output to

business cycle shocks drop sharply. In particular, Table 5 shows that the drop on impact in output

in response to the monetary shock goes from 1.01 percent (row five, column five) to 0.71 percent

(row six, column five) as the economy enters its credit-frictionless region. This is further illustrated

in Figure A1 with the impulse responses of output and credit to the shock, for the highest value of

the matching efficiency σm for which the borrowing constraint is still binding in steady-state (blue

solid lines) and for a marginally higher value for which it is not binding anymore (dashed green

lines). Notably, the economy with bank credit only, where the tightness of firms’ credit constraints

is not affected by the matching efficiency on the e-commerce platform, does not experience such a

discrete drop in the sensitivity of real activity to the shock (Table 5, column seven, row five versus

row six).

7.1 Big tech credit and financial stability

We next turn to evaluate the role of big tech credit for financial stability. In particular, we ask

whether the availability of big tech credit can shield the economy from the impact of a financial

shock that contracts bank credit.

We consider the response of the economy to a surprise decline in νt, which affects the resale

value of firms’ capital and its pledgeability at banks. Figure 8 compares the responses to the shock

in the economy with both big tech and bank capital (blue line) to those in the baseline economy
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with bank credit only (red line).
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Figure 8: Dynamic responses to an adverse financial shock
Notes: The financial shock is a one percent surprise innovation ϵν

t to the pledgeable share of the capital value for a
persistent financial shock with ρν = 0.95. Low matching efficiency: σm = 0.01. Share of big tech credit: 15%. Y-axis:
percentage deviation from steady-state.

When bank credit is the only source of financing for firms, the shock to νt reduces the collateral

value of capital. As a consequence, the supply of bank (and total) credit contracts, tightening the

credit constraints and strengthening the financial accelerator. This is also true in the economy with

both types of credit. The shock to the resale value of capital reduces its price and, everything else

equal, lowers the supply of bank credit. In this economy, however, the reduction in the price of

capital also boosts the profits of intermediate firms and their network value, increasing the supply

of big tech credit. The overall impact is only a mild decline in total credit and a mild increase in

the tightness of the credit constraints. The higher current and future profits of intermediate goods

firms help sustain the demand for capital and limit the fall in its price. As a result of these general

equilibrium effects, the contraction of bank credit is more contained than in the baseline economy.

Overall, the availability of big tech credit contributes to ensure financial stability along two
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dimensions. On the one hand, it reduces the negative impact of the adverse financial shock on

bank lending. On the other hand, it acts as a “spare tyre” for the economy, preventing a larger

contraction of total credit and real activity.

8 Conclusions

Motivated by the recent advent of big tech companies into finance, we provide an analytical framework

to study how these structural changes in financial intermediation might affect the macroeconomy.

We obtain three sets of results. First, according to our model, an expansion in big techs’ activity,

as captured by a rise in the matching efficiency on the e-commerce platform, increases the value

for firms of trading on the platform and the availability of big tech credit. This in turn relaxes

financing constraints and raises firms’ output, driving production closer to its efficient level. Big

techs’ macroeconomic efficiency gains are however limited by the distortionary nature of the fees

collected from their platform users. Specifically, as most big tech fees are proportional to transactions

on the platform, they act de facto as sales taxes and distort the equilibrium allocation.

Second, under our baseline calibration, when matching efficiency on the e-commerce platform is

relatively low, big tech credit reacts less than bank credit to business cycle shocks due to a more

muted response of firms’ opportunity cost of default on this new type of credit (future profits)

compared to that on bank credit (real estate collateral). Thus, at relatively low matching efficiency

levels, this novel type of credit can work to mitigate the responses of total credit and output to

business cycle fluctuations. As matching efficiency on the e-commerce platform rises and the effect

of matching frictions vanishes, network collateral becomes more sensitive to macroeconomic shocks

and the mitigation effect of big tech credit weakens. Eventually, once matching efficiency becomes

sufficiently high to push the economy into its credit-frictionless region, the financial accelerator fades

away and the sensitivities of total credit and real activity to business cycle shocks drop sharply.

Third, our analysis shows that the entry of big tech in financial intermediation contributes to

financial stability by shielding the economy from the impact of adverse financial shocks that reduce

the supply of bank credit. By mitigating the impact of the shock on the price of capital and its

collateral value, the availability of big tech credit reduces the negative impact of the adverse financial

shock on bank loans and provides a “spare tyre” for the economy, preventing a larger contraction of

total credit and real activity.
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Our results suggest that the sensitivities of network and physical collateral to business cycle

shocks, as well as the overall impact of the latter on the different sources of finance, credit and

output, will likely differ across countries, depending on the level of financial development and the

efficiency of the e-commerce platforms.

Looking forward, possible extensions of our framework include the analysis of big techs’ financing

constraints, optimal interest rate and fee setting by big techs, big techs’ market power and regulation.

References

Altinoglu, L. (2021): “The origins of aggregate fluctuations in a credit network economy,” Journal

of Monetary Economics, 117, 316–334.

Amable, B., J.-B. Chatelain, and K. Ralf (2010): “Patents as collateral,” Journal of Economic

Dynamics and Control, 34(6), 1092–1104.

Bahaj, S., A. Foulis, G. Pinter, and P. Surico (2022): “Employment and the residential

collateral channel of monetary policy,” Journal of Monetary Economics, 131, 26–44.

Barakova, I., J. Ehrentraud, and L. Leposke (2024): “A two-sided affair: banks and tech

firms in banking,” FSI Insights, 60.

Bazarbash, M. (2019): Fintech in financial inclusion: machine learning applications in assessing

credit risk. International Monetary Fund.

Beck, T., L. Gambacorta, Y. Huang, Z. Li, and H. Qiu (2022): “Big techs, QR code payments

and financial inclusion,” BIS Working Papers 1011, Bank for International Settlements.

Bernanke, B. S. (1983): “Nonmonetary Effects of the Financial Crisis in Propagation of the Great

Depression,” American Economic Review, 73(3), 257–276.

Bernanke, B. S., M. Gertler, and S. Gilchrist (1999): “The financial accelerator in a

quantitative business cycle framework,” Handbook of macroeconomics, 1, 1341–1393.

Bocola, L., and G. Bornstein (2023): “The macroeconomics of trade credit,” Discussion paper,

National Bureau of Economic Research.

41



Boissay, F., G. Cornelli, and L. Gambacorta (2019): “Big techs vs G-SIFIs: differences in

market Report, Chapter 3.

Bond, C. (1998): “Debtor harassment: badgering, deception, shame and fear,” Consumer Rights

Journal, 2(4), 3–9.

Cahuc, P., S. Carcillo, and A. Zylberberg (2014): Labor economics. MIT press.

Caldara, D., and E. Herbst (2019): “Monetary policy, real activity, and credit spreads: Evidence

from Bayesian proxy SVARs,” American Economic Journal: Macroeconomics, 11(1), 157–192.

Calvo, G. A. (1983): “Staggered prices in a utility-maximizing framework,” Journal of Monetary

Economics, 12(3), 383–398.

Cen, L., S. Dasgupta, and R. Sen (2016): “Discipline or disruption? Stakeholder relationships

and the effect of takeover threat,” Management Science, 62(10), 2820–2841.

Clarida, R., J. Gali, and M. Gertler (2000): “Monetary policy rules and macroeconomic

stability: evidence and some theory,” The Quarterly journal of economics, 115(1), 147–180.

Cornelli, G., F. De Fiore, L. Gambacorta, and C. Manea (2024): “Fintech vs bank credit:

How do they react to monetary policy?,” Economics Letters, 234, 111475.

Cornelli, G., J. Frost, L. Gambacorta, P. R. Rau, R. Wardrop, and T. Ziegler (2023):

“Fintech and big tech credit: Drivers of the growth of digital lending,” Journal of Banking Finance,

148, 106742.

Croxson, K., J. Frost, L. Gambacorta, and T. Valletti (2023): “Platform-based business

models and financial inclusion: Policy trade-offs and approaches,” Journal of Competition Law &

Economics, 19(1), 75–102.

Cunat, V. (2007): “Trade credit: suppliers as debt collectors and insurance providers,” The Review

of Financial Studies, 20(2), 491–527.

De Fiore, F., and O. Tristani (2013): “Optimal monetary policy in a model of the credit

channel,” The Economic Journal, 123(571), 906–931.

42



Drechsel, T. (2023): “Earnings-based borrowing constraints and macroeconomic fluctuations,”

American Economic Journal: Macroeconomics, 15(2), 1–34.

Drechsel, T., and S. Kim (2024): “Macroprudential policy with earnings-based borrowing

constraints,” Journal of Monetary Economics, p. 103595.

Eickmeier, S., and B. Hofmann (2013): “Monetary policy, housing booms, and financial (im)

balances,” Macroeconomic dynamics, 17(4), 830–860.

Frost, J., L. Gambacorta, Y. Huang, H. S. Shin, and P. Zbinden (2019): “BigTech and the

changing structure of financial intermediation,” Economic Policy, 34(100), 761–799.
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9 Appendix

A Matching efficiency and the financial accelerator
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Figure A1: Dynamic responses to a monetary policy shock
Notes: The monetary policy shock is due to a monetary surprise ϵm

t of 25 basis points. Y-axis: percentage deviation
from steady-state.

B Big tech credit and technology shocks

Baseline model with both types of credit Bank credit only

Matching efficiency/Variables Big tech credit Bank credit Total credit Output Credit Output

Low -0.76 -1.94 -1.76 -1.08 -2.03 -1.16

Intermediate -1.61 -1.90 -1.77 -1.08 -2.03 -1.16

High -0.76 -0.76 -0.76 -0.76 -2.04 -1.16

Table B1: Matching efficiency and the effect of technology shocks on credit and output
Notes: Effect on impact to an adverse one standard deviation technology shock. Low/intermediate/high matching
efficiency levels: σm ∈ {0.01, 0.04, 0.07} with associated shares of big-tech credit equal to 15%, 40% and 60%.
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